期刊文献+

Poisson方程热源识别反问题 被引量:6

The Inverse Problem of the Identification of the Heat Source for the Poisson Equation
下载PDF
导出
摘要 探讨了半带状区域上二维Poisson方程只含有一个空间变量的热源识别反问题.这类问题是不适定的,即问题的解(如果存在的话)不连续依赖于测量数据.利用Carasso-Tikhonov正则化方法,得到了问题的一个正则近似解,并且给出了正则解和精确解之间具有Holder型误差估计.数值实验表明Carasso-Tikhonov正则化方法对于这种热源识别是非常有效的. This paper discusses the inverse problem of determining a space-wise heat source in the Poisson equation in a half strip domain. This problem is ill-posed, i.e., the solution does not depend continuously on the given data. A regularization solution of the inverse problem is obtained by the Carasso-Tikhonov regularization method. For the regularization solution, H51der type stability estimate is obtained between the regularization solution and the exact solution. A numerical example shows that the Carasso-Tikhonov regularization method works effectively for identification the heat source.
作者 杨帆 傅初黎
出处 《数学物理学报(A辑)》 CSCD 北大核心 2010年第4期1080-1087,共8页 Acta Mathematica Scientia
基金 国家自然科学基金(10671085) 兰州理工大学学校基金(92111 92104)资助
关键词 POISSON方程 热源 正则化 Carasso-Tikhonov Poisson equation Heat source Regularization Carasso-Tikhonov.
  • 相关文献

参考文献11

  • 1Li G S. Data compatibility and conditional stability for an inverse source problem in the heat equation. Applied Mathematics and Computation, 2006, 173:566-581.
  • 2Yi Z, Murio D A. Source term identification in 1 -D IHCP. Computers and Mathematics with Applications, 2004, 47:1921-1933.
  • 3Farcas A, Lesnic D. The boundary-element method for the determination of a heat source dependent on one variable. Journal of Engineering Mathematics, 2006, 54:375-388.
  • 4Johansson T, Lesnic D. Determination of a spacewise dependent heat source. Journal of Computational and Applied Mathematics, 2007, 209:66-80.
  • 5Yan L, Fu C L, Yang F L. The method of fundamental solutions for the inverse heat source problem. Engineering Analysis with Boundary Elements, 2008, 32:216- 222.
  • 6冯立新,屈彦呈.Poisson方程反问题的惟一性和稳定性[J].中国科学(A辑),2007,37(5):595-604. 被引量:2
  • 7Kirsch A. An Introduction to the Mathematical Theory of Inverse Problem. New York: Springer, 1996.
  • 8Carrasso A. Determining surface temperature from interior observations. SIAM Journal of Application Mathematics, 1982, 42:558 574.
  • 9Fu C L. Simplified Tikhonov and Fourier regularization methods on a general sideways parabolic equation. Journal of Computational and Applied Mathematics, 2004, 167:449-463.
  • 10Cheng W, Fu C L. A modified Tikhonov regularization method for a spherically symmetric three-dimensional inverse heat conduction problem. Mathematics and Computers in Simulation, 2007, 75:97-112.

二级参考文献7

  • 1Arora N. MOSFET Models for VLSI Circuit Simulation, Theory and Practice. New York-Vienna: Springer-Verlag, 1993
  • 2Kareh B E, Bombard R J. Introduction to VLSI Silicon Devoices, Physics, Technology and Characterization. Boston: Kluwer Academic Publishers, 1986
  • 3Friedman A. Detection of mines by electric measurements. SIAM J Appl Math, 1987, 47:201-212
  • 4Struwe M. Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian System. Berlin: Springer, 2000
  • 5Isakov V. Inverse Problems for Partial Differential Equations. Berlin: Springer, 1998
  • 6Ekeland I , Temam R. Convex Analysis and Variational Problems. New York: North-Holland, Amsterdam, and American Elsevier, 1976
  • 7Troianiello G M. Elliptic Differential Equation and Obstacle Problems. New York: Plenum Press, 1987

共引文献1

同被引文献38

  • 1孙胜先,钱泽平.幂等和幂零阵的伴随阵的反问题[J].大学数学,2006,22(5):114-116. 被引量:4
  • 2冯立新,屈彦呈.Poisson方程反问题的惟一性和稳定性[J].中国科学(A辑),2007,37(5):595-604. 被引量:2
  • 3王彦飞.反演问题的计算方法及其应用[M]北京:高等教育出版社,2007.
  • 4Li G S. Data compatibility and conditional stability for an inverse source problem in the heat equation[J].Applied Mathematics and Computation,2006.566-581.
  • 5Yi Z,Murio D A. Source term identification in 1-DIHCP[J].Computers and Mathematics with Applications,2004.1921-1933.
  • 6Farcas A,Lesnic D. The boundary-element method for the determination of a heat source dependent on one variable[J].Journal of Engineering Mathematics,2006.375-388.
  • 7Johansson T,Lesnic D. Determination of a spacewise dependent heat source[J].Journal of Computational and Applied Mathematics,2007.66-80.
  • 8Yan L,Fu C L,Yang F L. The method of fundamental solutions for the inverse heat source problem[J].Engineering Analysis With Boundary Elements,2008.216-222.
  • 9Cheng H W,Huang J F,Leiterman T J. An adaptive fast solver for the modified Helmholtz equation in two dimensions[J].Journal of Computational Physics,2006.665-674.
  • 10Engl H W,Hanke M,Neubauer A. Regularization of Inverse Problem[M].Boston,MA:Kluwer Academic Publishers,1996.

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部