期刊文献+

无约束优化的二次三对角插值直接搜索法

A Quadratic Tridiagonal Interpolation DFO Method for Unconstrained Optimization
下载PDF
导出
摘要 该文提出了一个基于二次三对角模型的直接搜索法.在通常的条件下,论文给出和证明了这个方法的收敛性.数值试验表明这个方法是较为有效的. This paper presents a new derivative free optimization(DFO) method which is based on a quadratic tridiagonal interpolation model. Under mild assumptions, the convergence results of this method are given and proved. Numerical experiments show that the new method is promising.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2010年第4期1117-1125,共9页 Acta Mathematica Scientia
基金 江苏省基础研究计划(自然科学基金)(2006184) 南京工业大学青年教师学术基金(39704017)资助
关键词 直接搜索法 二次插值模型 二次三对角插值模型 Derivative free optimization method Quadratic interpolation model Quadratictridiagonal interpolation.
  • 相关文献

参考文献1

二级参考文献7

  • 1Conn A R, Toint Ph L. An algorithm using quadratic interpolation for unconstrained derivative free optimization. In: Di Pillo G, Gianessi F, eds. Nonlinear Optimization and Applications. New York:Plenum Publishing, 1996. 27-47.
  • 2Conn A R, Scheinberg K, Toint Ph L. On the convergence of derivative free methods for unconstrained optimization. In: Iserles A, Buhmann M, eds. Approximation Theory and Optimization: Tributes to M J D Powell. Cambridge: Cambridge University Press, 1997. 83-108.
  • 3Conn A R, Scheinberg K, Toint Ph L. A derivative free optimization algorithm in practice. Proceedings of the AIAA St Louis Conference, 1998. 95-105.
  • 4Sorensen D C. The Q-superlinear convergence of a collinear scaling algorithm for unconstrained optimization. SIAM J Numer Anal, 1980, 17:84-114.
  • 5Conn A R, Scheinber K, Toint Ph L. Recent progress in unconstrained nonlinear optimization without derivatives. Mathematical Programming, 1997, 79:397-414.
  • 6Di S, Sun W. A trust region method for conic model to solve unconstrained optimization. Optimization Methods and Software, 1996, 6:237-263.
  • 7Powell M J D. Direct search algorithms for optimization calculations. Acta Numerica, 1998, 7:287-336.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部