期刊文献+

无限簇非扩张非自映象公共不动点的黏性逼近法

Viscosity Approximation Methods for Common Fixed Points of Infinite Nonexpansive Nonself-mappings
下载PDF
导出
摘要 设E是具有一致Gateaux可微范数的严格凸的自反的Banach空间,K是E的非空闭凸子集而且是E的sunny非扩张收缩核.设f:K→K是一压缩映象,P:E→K是一sunny非扩张保核收缩,{Tn}n∞1:K→E是一可数无限簇非扩张非自映象且是[0,1]中的非负数列.考虑下列迭代序列其中Wn是由P,Tn,T(n-1),…,T1和λn,λ(n-1),…,λ1,n≥1生成的W-映象.该文在较弱条件下用黏性逼近方法证明了迭代序列{x_n}强收敛于p∈F且p是下列变分不等式〈(I-f)p,j(p-x*)〉≤0,x*∈F的唯一解. Let E be a real strictly convex and reflexive Banach space with a uniformly Gateaux differentiable norm and K be a nonempty closed convex subset of E which is also a sunny non- expansive retract of E. Let f:K→K be a contractive mapping, P be a sunny nonexpansive T retraction of E onto K and { n}n=1 : K → E be a family of countable infinite nonexpansive nonself-mappings such that the common fixed point set seqence of nonnegative numbers in [0, 1]. Consider the following iterative sequence where Wn is the W-mapping generated by P, Tn,Tn-1,… ,T1 and λn,λ(n-1),…,λ1,n≥1 for any n ≥ 1. It is shown that under very mild conditions on the parameters, the sequence {Xn} converges strongly to p C F, where p is the unique solution in F to the following variational inequality 〈(I-f)p,j(p-x*)〉≤0,x*∈F
出处 《数学物理学报(A辑)》 CSCD 北大核心 2010年第4期1144-1157,共14页 Acta Mathematica Scientia
关键词 非扩张非自映象 一致Gateaux可微范数 黏性逼近 公共不动点 Nonexpansive nonself-mapping Uniformly Ggteaux differentiable norm Viscosityapproximation Common fixed point.
  • 相关文献

参考文献17

  • 1Bauschke H H. The approximation of fixed points of compositions of nonexpansive mappings in Banach spaces. J Math Anal Appl, 1996, 202:150-159.
  • 2Chang S S. Viscosity approximation methods for a finite family of nonexpansive mappings in Banaeh spaces. J Math Anal Appl, 2006, 323(2): 1402-1416.
  • 3Suzuki T. Strong convergence of Krasnoselskii and Mann's type sequences for onepaxameter nonexpansive semigroups without Bochner integrals. J Math Anal Appl, 2005, 305:227 239.
  • 4Shimoji K,Takahashi W. Strong convergence to common fixed points of infinite nonexpansive mappings and applications. Taiwan Residents J Math, 2001, 5:387-404.
  • 5Kikkawa M, Takahashi W. Approximating fixed points of infinite nonexpansive mappings by the hybrid method. J Optim Theory Appl, 2003, 117:93-101.
  • 6Moudafi A. Viscosity approximation methods for fixed points problems. J Math Anal Appl, 2000, 241: 46-55.
  • 7Xu H K. Viscosity approximation methods for nonexpansive mappings, d Math Anal Appl, 2004, 298: 279-291.
  • 8Yao Y, Yao J C, Zhou H Y. Approximation methods for common fixed points of infinte countable family of nonexpansive mappings. Comput Math Appl, 2007, 53:1380-1389.
  • 9Ceng L C, Yao J C. Relaxed viscosity approximation methods for fixed point problems and variational inequality problems. Nonlinear Anal, 2008, 69:3299 -3309.
  • 10Zeng L C, Yao J C. Strong convergence theorem by an extragradient methods for fixed point problems and variational inequality problems. Taiwan Residents J Math, 2006, 10(5): 1293-1303.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部