期刊文献+

激光等离子体受激Raman散射光谱的时间分辨测量 被引量:2

Measurement of time-resolved spectra of scattered light by stimulated Raman scattering from laser plasma
下载PDF
导出
摘要 采用光学多道谱仪和光学条纹相机耦合,组成时间分辨的Raman散射光谱测量系统,可实现0.5nm的光谱分辨和好于10ps的时间分辨。采用该测量系统,在神光Ⅱ装置上开展了脉宽1ns、波长351nm的激光与两种不同尺寸柱腔靶相互作用的物理实验,获得了时间分辨的SRS光谱实验结果。研究表明,SRS光谱在时间上相对于入射激光有一定的延迟,腔靶尺寸减小时,延迟时间随之减小。通过长、短波截止波长分析电子密度方法,计算得出了Ⅰ型和Ⅱ型腔靶SRS散射光最短波长光谱发生的密度区分别为0.069nc和0.027nc。 A diagnostic of time-resolved spectra of scattered light has been developed using optical multichannel analyzer coupled with optical scanning camera. The time-resolved spectra could achieve a goal of SRS temporal response with 10 ps resolution and dimensional response with 0.5 nm resolution. An experiment of laser-plasma interaction in hohlraum plasmas produced by laser beams with 351 nm wavelength,1 ns pulse duration at SGⅡ laser facility is reported. The time-resolved spectra of scattered light by stimulated Raman scattering(SRS) were measured. There existed a delay-time for the Raman scattering corresponding to the entering laser. When laser entered into a smaller hohlraum,the delay-time was minished. Electron density was obtained by cut-off wavelength analysis.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2010年第9期2051-2054,共4页 High Power Laser and Particle Beams
基金 国家高技术发展计划项目
关键词 激光等离子体 受激Raman散射 腔靶 电子数密度 laser-produced plasma stimulated Raman scattering hohlraum electron density
  • 相关文献

参考文献6

  • 1Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Phys Plasmas, 1995, 2(11) :3933-4025.
  • 2Lindl J, Amendt P, Richard L B, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Phys Plasmas, 2004, 11(2) :339-391.
  • 3Baldis H S, Campbell E M, Kruer W L. Physics of laser plasmas[M]. New York: North Holland, 1991.
  • 4王传珂,刘慎业,王哲斌,彭晓世,况龙钰,蒋刚.光学多道谱仪和CCD组合系统的效率曲线标定[J].光电子技术与信息,2006,19(2):25-29. 被引量:3
  • 5王哲斌,郑坚,蒋小华,刘慎业,李文洪,刘万东,俞昌旋,刘永刚,张海鹰,谭晓青,彭晓世,丁永坤,郑志坚.351nm激光入射大腔靶的受激Raman散射光谱[J].强激光与粒子束,2004,16(1):45-49. 被引量:10
  • 6张家泰,许林宝,常铁强,张书贵,聂小波,王世红,汪卫星.激光靶等离子体受激Raman散射[J].物理学报,1991,40(10):1642-1651. 被引量:3

二级参考文献30

  • 1Baldis H S, Campbell E M, Kruer W L. Physics of laser plasmas[M]. New York: Norht-Holland, 1991.
  • 2Liu C S, Rosenbluth M N, White R B. Raman and Brillouin scattering of electromagnetic waves in inhomogeneous plasmas[J]. Phys Fluids,1974,17(6): 1211.
  • 3Estabrook K, Kruer W L, Lasinski B F. Heating by Raman Backscatter and Forward Seatter[J]. Phys Rev Lett,1980,45(17) :1399.
  • 4Tanaka K, Goldman L M, Seka W, et al. Stimulated Raman scattering from UV-laser-produced plasmas[J]. Phys Rev Lett, 1982,48(17) :1179.
  • 5Drake R P, Williams E A, Young P E,et al. Evidence that stimulated Raman scattering in laser-produced plasmas is an absolute instability[J]. Phys Rev Lett,1988, 60(11):1018.
  • 6Shepard C L, Tarvin J A, Busch G E, et al. Raman scattering in experiments with planar Au targets irradiated with 0.53μm laser light[J].Phys Fluids, 1986,29(2):583.
  • 7Simon A, Seka W, Goldman L M, et al. Raman scattering in inhomogeneous laser-produced plasma[J]. Phys Fluids, 1986,29(5):1704.
  • 8Afshar-rad T, Coe S E, Willi O, et al. Evidence of stimulated Raman scattering occurring in laser filaments in long-scale-length plasmas[J].Phys Fluids B, 1992, 4(5) :1301.
  • 9Barr H C, Boyd T J M, Coutts G A. Nonlocal effect and the Raman instability[J]. Phys Rev Lett, 1988,60( 19): 1950.
  • 10Turner R E, Phillion D W, Campbell E M, et al. Investigations of the magnetic structure and the decay of a plasma-gun-generated compact torus[J]. Phys Fluids, 1983,26(2) : 579.

共引文献11

同被引文献22

  • 1宋一中,贺安之.激光诱导Al等离子体中的Doppler效应[J].光谱学与光谱分析,2005,25(5):655-659. 被引量:6
  • 2John Lind]. Development of the indirect - drive ap- proach to inertial confinement fusion and the target physics basis for ignition and gain [J]. Phys. Plas- mas,1995, 2(11) :3933-4024.
  • 3Juan C. Fernandez, Bruno S. Bauer, James A. Cob- ble, et al.. Measurements of laser - plasma instability relevant to ignition hohlraums [ J ]. Phys. Plasmas, 1997 , 4(5) : 1849 -1856.
  • 4Chang Tieqiang, Ding Yongkun , Lai Dongxian, et al.. Laser hohlraum coupling efficiency on the Shen- guang facility [ J ].. Phys. Plasma, 2002, 9 ( 11 ) : 4744 - 4748.
  • 5Stevenson R M, Suter L J, Oades K, et al.. Effects of plasma composition on backscatter, hot electron pro- duction, and propagation in underdense plasmas [ J ]. Phys. Plasma,2004,11 (5) : 2709 -2715.
  • 6Froula I) H, Divol L, London R A,et al.. Pushing the limits of plasma length in inertial -fusion laser - plasma interaction experiments [ J ]. Phys. Rev. Lett. ,2008 ,100(1) :015002.
  • 7林兆祥 陈波 吴金泉.利用激光大气等离子体光谱检测大气污染.中国激光,2006,33:398-398.
  • 8Harilal S S, Bindhu C V, Tillack M S, et al. Internal structure and expansion dynamics of laser ablation plumes into ambient gases[J]. Journal of Applied Physics, 2003,93(5) : 2380-2388.
  • 9Peyre P, Fabbro R,Berthe R L, et al, Laser shock processing of materials, physical processes involved and examples of applications[J]. Journal of Laser Application, 1996,8 : 135-141.
  • 10Morales M, Ocana J L, Molpeceres C, et al. Model based optimization criteria for the generation of deep compressive residual stresses in high elastic limit alloys by laser shock processing[J]. Surface and Coatings Technology, 2008,202(11) :2257-2262.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部