期刊文献+

二乙烯基苯泡沫空心球微流体成型技术 被引量:2

Fabrication of divinylbenzene foam shells by microliquid technique
下载PDF
导出
摘要 基于微流体成型技术,设计开发了一套用于微胶囊制备的T型微通道乳粒发生器,并利用该装置实现了二乙烯基苯空心泡沫微球的连续制备。以二乙烯基苯的邻苯二甲酸二丁酯溶液为油相,以聚乙烯醇的水溶液为外水相,去离子水为内水相,成功制备出二乙烯基苯双重微乳液,并采用水平旋转加热装置使其凝胶固化,再经过溶剂交换、CO2超临界干燥等过程,制备出直径700~1200μm、壁厚60~100μm、密度90~120mg.cm-3的二乙烯基苯空心泡沫微球。利用光学显微镜、扫描电镜和X-透射显微镜表征,结果显示:微胶囊球形度、同心度和壁厚均匀性较好,成活率较高,直径单分散性较好,外表面较粗糙。 Based on the microliquid technique,a T-microchannel droplet generator was designed and developed for the continuous fabrication of hollow foam micro-shells of controlled size. Solutions of an internal water phase,an oil phase (divinylbenzene(DVB) monomer,dibutylphthalate solvent,and azodiisobutyronitrile initiator),and an external water phase were used in the fabrication of micro-shells. DVB hollow foam micro-shells of 700 to 1 200 μm in diameter and 60 to 100 μm in thickness were finally prepared in the density of 90 to 120 mg·cm-3 by level-rotation-heating,solvent exchanging and supercritical drying. Their morphology and diameter dispersivity were characterized by optical microscope,X-ray diffraction microscope and scanning electron microscope,etc. The results show that,the microcapsules has good sphericity,concentricity and thickness uniformity,as well as a high survival rate. The diameter monodispersity of the microcapsules is good,however,the surface is rough.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2010年第9期2082-2086,共5页 High Power Laser and Particle Beams
基金 中国工程物理研究院科学技术发展基金项目(2008B0302032)
关键词 微胶囊 微流体 二乙烯基苯 单分散 micro-shells microfluid divinylbenzene monodispersity
  • 相关文献

参考文献8

  • 1Paguio R R, Frederick C A, Hund J F, et al. Fabrication capabilities for spherical foam targets used in ICF experiments[R]. Knoxville, TN. GA-A25288, 2005.
  • 2侯海乾,王朝阳,唐永建,付志兵,关峰,刘淼.间苯二酚-甲醛气凝胶空心微球制备技术[J].强激光与粒子束,2008,20(7):1105-1108. 被引量:3
  • 3范勇恒,罗炫,方瑜,任洪波,崔轶,张林.多元丙烯酸酯泡沫微球的制备[J].强激光与粒子束,2009,21(5):677-680. 被引量:3
  • 4Streit J, Schroen D. Development of divinylbenzene foam shells for use as inertial fusion energy reactor targets[J]. Fusion Sci Technol, 2002, 43(3):321-326.
  • 5Takagi M, Norimatsu T, Yamanaka T, et al. A novel technique to make foam shells with high sphericity and wall uniformity for cryogenic laser fusion targets[J]. J Vac Sci Technol A, 1991, 9(3) : 820-823.
  • 6Zhang Lin, Tang Yongjian, Zhong Chifeng, et al. Preparation and characterization of deuterated polymer foams for thermal nuclear fusion targets[J]. Nuclear Instruments and Methods in Physics Research A, 2002, 480(1) :242-245.
  • 7Norimatsu T,Chen C M,Nakajima K,et al. Cryogenic targets and related technologies at ILE Osaka University[J]. J Vac Sci Technol A, 1994, 12(4):1293-1301.
  • 8范勇恒,张林.多元丙烯酸酯泡沫制备中的溶剂效应[J].强激光与粒子束,2004,16(2):192-194. 被引量:6

二级参考文献22

  • 1黄常刚,唐永建,王朝阳,闫红梅.间苯三酚-甲醛气凝胶及其碳气凝胶的制备与表征[J].强激光与粒子束,2006,18(6):949-952. 被引量:12
  • 2Takagi M, Norimatsu T, Yamanaka T, et al. A novel technique to make foam shells with high sphericity and wall uniformity for cryogenic laser fusion targets[J]. J Vac Sci Technol A, 1991,9(3) : 820-823.
  • 3Pekala R W. Organic aerogels from the polycondensation of resorcinol with formaldehyde[J]. J Mater Sci, 1989,24(9) : 3221-3224.
  • 4Overturf G E, Cook R, Letts S A, et al. Resorcinol/formaldehyde foam shell targets for ICF[J]. Fusion Technol, 1995,28(5) : 1803-1805.
  • 5Hund J F, Paguio R R, Frederick C A, et al. Silica, metal oxide, and doped aerogel development for target applications[J]. Fusion Sci Technol, 2006,49(4) : 669-675.
  • 6Frederick C A, Paguio R R, Nikroo A, et al. Controlling the pore size and gelation time of resorcinol formaldehyde foam for fabrication of direct drive targets for ICF experiments[J]. Fusion Sci Technol,2006,49 : 657-662.
  • 7Schroen-Carey D, Overturf G E, Reibold R, et al. Hollow foam microshells for liquid layered cryogenic inertial confinement fusion targets [J]. J Vac Sci Technol A,1995,13(5) : 2564-2568.
  • 8Danielsson I, Lindman B. The definition of microemulsion[J]. Colloids and Surfaces,1981,3(4) : 391-392.
  • 9Nazarov W, McGivern P G. Studies in microcellular polymer foams, produced by copolymerization[J]. Fusion Technology, 2000, 38:110.
  • 10Rosenberg J E,Flodin P. Macroporous Gels. 2. Polymerization of trimethylolpropane trimethacrylate in various solvents[J]. Macromole-cules, 1987, 20:1518--1522.

共引文献9

同被引文献14

  • 1Kim Y T,Messner W C,Leduc P R. Disruptive microfluidics:From life sciences to world health to energy[J].Disruptive Science and Technology,2012,(01):41-53.
  • 2Serra C A,Chang Z. Microfluidic-assisted synthesis of polymer particles[J].{H}Chemical Engineering & Technology,2008,(08):1099-1115.
  • 3Dendukuri D,Doyle P S. The synthesis and assembly of polymeric microparticles using microfluidic[J].{H}Advanced Materials,2009,(41):4071-4086.
  • 4Chabinyc M L,Chiu D T,McDonald J C. An integrated fluorescence detection system in poly (dimethylsiloxane) for microfluidic applications[J].{H}Analytical Chemistry,2001,(18):4491-4498.
  • 5Chang G J,Miao L B,Xu Z. Preparation of hollow poly(imino ether ketone) microspheres by microliquid technique[J].{H}Journal of Applied Polymer Science,2012,(05):4061-4069.
  • 6Xu J H,Li S W,Tan J. Controllable preparation of monodisperse O/W and W/O emulsions in the same microfluidic device[J].{H}LANGMUIR,2006,(19):7943-7946.doi:10.1021/la0605743.
  • 7Lan W J,Li S W,Xu J H. Synthesis of titania-silica core-shell microspheres via a controlled interface reaction in a microfluidic device[J].{H}LANGMUIR,2011,(21):13242-13247.
  • 8唐永建,张林,吴卫东,李波.ICF靶材料和靶制备技术研究进展[J].强激光与粒子束,2008,20(11):1773-1786. 被引量:12
  • 9罗炫,张林,杜凯,方瑜,袁光辉.低密度对二乙烯基苯泡沫的优化制备[J].强激光与粒子束,2010,22(1):63-67. 被引量:2
  • 10高存梅,罗炫,方瑜,张庆军,杜凯,唐永建.微流控制备单分散微米级SiO_2微球[J].强激光与粒子束,2012,24(6):1401-1405. 被引量:6

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部