期刊文献+

表面氧钝化碳化硅纳米团簇电子结构和光学性质的第一性原理研究 被引量:3

First-principles Calculations of the Electronic Structures and Optical Properties of Oxygen Passivated 4H-SiC Nanostructures
下载PDF
导出
摘要 基于密度泛函理论(DFT)和广义梯度近似(GGA),对氧钝化条件下4H—SiC纳米团簇的电子结构和光学性质进行了研究。计算了不同直径的4H—SiC纳米球氧钝化后的能带结构、电子态密度和光学性质。团簇的尺度在0.4~0.9nm之间,构建表面仅存在硅氧双键和表面仅存在碳氧双键的两种模型。研究表明硅氧双键和碳氧双键所引起的缺陷态位于原4H—SiC的价带和导带之间,并且缺陷态与价带顶的能量差随纳米团簇颗粒直径的增大而减小;缺陷态主要是由Si原子外层电子和氧原子外层电子轨道杂化引起的。同时,由于氧的存在,对碳化硅的结构产生一定的影响,这也是缺陷态形成的一个原因。另外,碳氧双键和硅氧双键钝化对4H~SiC纳米团簇的光学性质有着不同的影响。在表面仅存在C=O的情况下,4H—SiC纳米团簇表现出各向同性的性质。在表面仅存在Si=O的情况下,4H—SiC纳米团簇表现出各向异性的性质。 The electronic structures and optical properties of silicon carbide nanoclusters passivation with oxygen atoms have been calculated using density functional theory (DFT). The nanoclusters are obtained from bulk 4H crystal and the energy gaps and optical constants of spherical SiC nanoclusters with different diameters (0. 4-0. 9 nm) have been calculated. Two models have been constructed, one with only Si=O on the surface and the other one with only C= O on the surface. After oxidization, new localized trap states have been found, which are caused by C= O double bonds and Si= O double bonds based on the band structure and density of states of the clusters. The new trap states are mainly due to the orbital hybridization from the outer electrons of the oxygen and siIicon atoms. Meantime, oxygen atoms have effect in some degree on the structures of the nanoclusters, which is another reason for the formation of the localized trap states. Optical constans of nanoclusters have been obtained and analyzed. The calculated results indicate that 4H-SiC nanoclusters exhibit isotropic and anisotropic properties with C= O and Si= O on the surface respectively.
出处 《光散射学报》 北大核心 2010年第2期108-114,共7页 The Journal of Light Scattering
基金 南开大学国家大学生创新型实验计划(NK0715) 南开大学物理学基地(J0730315)
关键词 第一性原理 碳化硅纳米团簇 氧钝化 电子结构 光学性质 First-principles SiC nanoclusters oxygen passivation electronic structuresoptical properties
  • 相关文献

参考文献23

  • 1Capano M A, Trew R J. Silicon carbide electronic materials and devices [C]. MRS Bull, 1997, 3 (22).
  • 2Choyke W J, Matsunami H M. Silicon carbide: a review of fundamental questions and applications to current device technology[M]. Akademie, Berlin: 1998, Vols. 1 and 2.
  • 3Smith K L, Black K M. Characterization of the treated surfaces of silicon alloyed pyrolytic carbon and SiC [J]. J. Vac. Sci. Technol, 1984, 2 (2)): 744--748.
  • 4Santavirta S, Takagi M, Nordsletten L. Bioeom- patibility of silicon carbide in colony formation test in vitro [J]. Arch. Orthop. Trauma Surg, 1998, 118 (1): 89--92.
  • 5Cicero G, Catellani A, Galli G. Atomic control of water interaction with biocompatible surfaces: the case of SiC (001)[J]. Phys. Rev. Lett., 2004, 93 (1): 016102.
  • 6Harris G L. Properties of silicon carbide, EMIS Data reviews Series [M]. London: INSPEC, 1995, Vol. 13.
  • 7Saddow S E, Agrawal A. Advances in silicon carbide processing and applications [M]. BostonLondon: Artech House, 2004.
  • 8Choyke W J, Matsunami H M, Pensl G. Silicon carbide: recent major advances [M]. Berlin: Springer, 2004.
  • 9Brus Louis. Electronic wave functions in semicon- ductor clusters: experiment and theory [J]. J. Phys. Chem., 1986, 90 (12): 2555--2560.
  • 10Proot J P, Delerue C, Allan G. Electronic structure and optical properties of silicon crystallites: application to porous silicon [J]. Appl. Phys. Lett., 1992, 61 (16): 1948--1951.

同被引文献54

  • 1曹银花,李林,王智勇.非球面金属反射镜在红外热成像系统中的应用研究[J].红外技术,2006,28(7):373-377. 被引量:11
  • 2谭满清,林永昌.过渡金属超薄膜的光学性质及其应用[J].中国激光,1997,24(4):323-326. 被引量:4
  • 3Morosin B, Mullendore A W, Emin D, et al. Rhombohedral crystal structure of compounds containing boron-rich icosahedra[J]. AIP Confer- ence Proceedings, 1986, 140(1): 70.
  • 4Bakalova S, Gong Y, Cobet C, etal. Energy band structure and optical response function of icosahe- dral Bn As2: A spectroscopic ellipsometry and first-principles calculational study [ J ]. Phys. Rev. B, 2010, 81(7): 075114.
  • 5Li D. and W. Y. Ching. Electronic structure and optical properties of the B12O2 crystal[J]. Phys. Rev. B, 1996, 54: 1451.
  • 6Morrison I, Bylander D M, Kleinman L. Bands and bonds of B12As2[J]. Phys. Rev. 13, 1992, 45 (4) : 1533.
  • 7Armstrong D, Bolland J, Perkins P. The electron- ic structure of a-B12, B12 P2 and B12 AS2 [J]. Theo- retical Chemistry Accounts: Theory, Computa- tion, and Modeling (Theoretica Chimica Aeta), 1984, 64(6): 501.
  • 8Fan Z, Wang B, Xu X, etal. First-principles cal-culation of vibrational properties of B12 As2 crystal[J]. Physica Status Solidi (B), 2010, 248 (5) : 1242.
  • 9Wu J, Zhu H, Hou D, et al. High Pressure X-ray diffraction study on icosahedral boron arsenide (B12As2)[J]. J. Phys. Chem. Solids, 2011, 72. 144.
  • 10Emin D. Unusual properties of icosahedral boron- rich solids[J]. Journal of Solid State Chemistry, 2006, 179(9): 2791.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部