期刊文献+

自然扩充的某些关于熵和乘积的动力学性质(英文)

Some dynamical properties via entropy and product for nature extensions
下载PDF
导出
摘要 主要研究了自然扩充中,熵对、极大零熵因子、一致正熵和完全正熵等与熵有关的动力学性质,以及不交性和弱不交性等与乘积有关的动力学性质.应用这些性质,构造了自身和其自然扩充之间具有严格的中间因子的极小拓扑动力系统. For nature extensions,some dynamical properties via entropy such as entropy pairs,maximal zero entropy factor,u.p.e. and c.p.e. were studied,and some product properties via weak disjointness and disjointness were also studied. By applying these properties,a minimal TDS which has an extension strictly between itself and its nature extension was provided.
作者 郑冬梅
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2010年第6期594-598,共5页 JUSTC
关键词 自然扩充 不交性 nature extension entropy disjointness
  • 相关文献

参考文献1

二级参考文献6

  • 1[1]Blanchard F. A disjointness theorem involving topological entropy [J]. Bull. Soc. Math.France. , 1993,121 (4) :465-478.
  • 2[2]Blanchard F. , Lacroix Y. Zero entropy factors of topological flows [J]. Proceedings of the American mathematical society, 1993,119 (3):985 -992.
  • 3[3]Lemanczyk M.,Siemaszko A. A note on the existence of a largest topological factor with zero entropy [ J ]. Proceedings of the American mathematical society,2001, 129(2) :475-482.
  • 4[4]Auslander J. Minimal flows and their extensions (North-Holland Mathematics Studies,153) [M]. Amsterdam: North-Holland,1988.
  • 5[5]Walters P. An introduction to ergodic theory[M]. New York:Springer,1982.
  • 6[6]Kelly J. L. General Topology [ M ]. Princeton,N.J. ,Van Nostrand, 1955.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部