期刊文献+

单晶颗粒增强WC_p/Ti-6Al-4V梯度复合材料层微观断裂行为 被引量:1

Micro Fracture Behavior of Single Crystal Particle Reinforced WC_p/Ti-6Al-4V Functionally Graded Materials Layer
原文传递
导出
摘要 采用激光熔注技术在Ti-6Al-4V表面制备了单晶颗粒增强的WCp/Ti-6Al-4V梯度复合材料层。利用扫描电镜原位拉伸试验,观察复合材料层裂纹形成、扩展的动态过程,研究其微观断裂行为。结果表明,WCp/Ti-6Al-4V复合材料层的失效机制主要有两种:WC颗粒开裂和WCp/Ti界面开裂。WC颗粒开裂是主要失效形式,WCp/Ti界面开裂的比例相对较少,而且主要发生在较高的应变情况下。激光熔注条件下形成的规则胞状反应层有利于应力由基体传向增强颗粒。在拉伸过程中,WC颗粒内部应力由最初的压应力逐渐变为拉应力。WC颗粒内部拉应力的极大值可达2000MPa,高于单晶WC陶瓷的抗拉强度。 Laser melt injection(LMI) was used to prepare single crystal particle reinforced WCp/Ti-6Al-4V functionally graded materials(FGMs) layer on Ti-6Al-4V.In situ tensile test in scanning electron microscope(SEM) was employed to study the crack formation and propagation of the FGMs layer.The micro fracture behavior was also studied.The results show that there are mainly two failure mechanisms:WC particle cracking and WCp/Ti interface decohesion.WC particle cracking forms the majority of the crack nucleation.In contrast,WCp/Ti interface decohesion is a rarely observed phenomenon,which usually occurs at higher strains.In addition,the regular cellular reaction layer formed in LMI plays a positive role in the load transfer from the matrix to the particle.During the tensile test,the stress state of WCp gradually changes from initial compressive stress to tensile stress.Furthermore,the maximum tensile stress inside the WC particle is about 2000 MPa,which is much higher than the critical fracture strength of single crystal WCp.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2010年第8期1431-1434,共4页 Rare Metal Materials and Engineering
基金 哈尔滨工业大学现代焊接生产技术国家重点实验室资金资助
关键词 激光熔注 梯度复合材料 断裂行为 原位拉伸 laser melt injection functionally graded materials fracture behavior in situ tension
  • 相关文献

参考文献12

  • 1金云学,李俊刚.TiC/Ti复合材料动态拉伸的裂纹形成及扩展机制[J].稀有金属材料与工程,2007,36(5):764-768. 被引量:5
  • 2Ganguly P, Poole W J, Lloyd D J. Scripta Mater[J], 2001, 44:1099.
  • 3Oh J C, Lee S. Surf Coat Technol[J], 2004, 179:340.
  • 4Kenesei P, Biermann H, Borbely A. Scripta Mater[J], 2005, 53 : 787.
  • 5Ocelik V, Vreeling J A, De Hosson J T M. In: Brebbia C A eds. Surface Treatment V[C]. Southampton: WIT Press, 2001:151.
  • 6Liu D J, Li L Q, Li F Q et al. Surf Coat Technol[J], 2008, 202:1771.
  • 7Ayers J D, Tucker T R. Thin Solid Films[J], 1980, 73:201.
  • 8刘德健,李福泉,陈彦宾,李俐群.激光熔注法制备WC_p/Ti-6Al-4V梯度复合材料层[J].稀有金属材料与工程,2008,37(10):1790-1794. 被引量:12
  • 9Chen Y B, Liu D J, Li F Q et al. Surf Coat Technol[J], 2008, 202:4780.
  • 10Liu D J, Chen Y B, Li L Q et al. Scripta Mater[J], 2008, 59: 91.

二级参考文献21

  • 1丁红燕,戴振东.钛合金在海水中的微动磨损特性[J].稀有金属材料与工程,2007,36(5):778-781. 被引量:15
  • 2ShiShanhui(飴山惠) QiaoJingguangmi(橋井光弥) JinJingxinxing(今井信幸)etal.日本金属学会誌,1996,60(10):944-944.
  • 3Ee T W, Lee C H, Hwang S K. J Korean Inst Met Mater[J],1996, 34(7): 902
  • 4Jin Yunxue(金云学).Ph.D Dissertation of Harbin Institute of Technology (哈尔滨工业大学博士学位论文)[D],2002:28
  • 5Lv W J, Zhang D, zhang X N et al. Materals Science and Engineering[J], 2001, A311 : 142
  • 6Tsang H T, Chao C G, Ma C Y. Scripta Materialia[J], 1996,35(8): 1007
  • 7Miracle D B. Compos Sci Technol[J], 2005, 65:2526
  • 8Ayers J D, Tucker T R. Thin Solid Films[J], 1980, 73:201
  • 9Cooper K P, Ayers J D. Surf Eng[J], 1985, 1:263
  • 10Abboud J H, West D R F. J Mater Sci Lett[J], 1994, 13:457

共引文献15

同被引文献12

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部