期刊文献+

频移变尺度自适应随机共振在大信号检测中的应用 被引量:2

Application of Frequency-shifted and Re-scaling Adaptive Stochastic Resonance in Signal Detection
下载PDF
导出
摘要 针对随机共振检测大信号的局限性和判断随机共振发生时刻的盲目性,提出了将基于频域信噪比的自适应算法引入频移变尺度随机共振中,自动调节双稳态系统结构参数和采样频率,自动获取随机共振状态,实现大参数信号检测.数值仿真实验结果表明,频移变尺度自适应随机共振可以从强噪声背景中提取较高频率的周期信号;能自适应地寻找到随机共振发生时刻,获得了较高的输出信噪比,在信号检测领域具有更好的应用前景. Based on the limitation of stochastic resonance(SR) in weak signal detection with large parameters and the blindness of SR occurrence,the adaptive algorithm on the basis of frequency-domain RSN is combined to the method of Frequency-shifted and Re-scaling stochastic resonance(FRSR),the method can automatically adjust bistable system structure parameters and sampling frequency in order to obtain SR in detection high-frequency signal.The proposed method is verified with simulation signal.The results show that Frequency-shifted and Re-scaling Adaptive Stochastic resonance(FRASR) system can be used to detect high-frequency period signal submerged in strong noise.FRASR can find SR and improve the output RSN automatically,and have better application prospects.
出处 《信阳师范学院学报(自然科学版)》 CAS 2010年第3期415-419,共5页 Journal of Xinyang Normal University(Natural Science Edition)
基金 国家863项目资助课题(2008AA06Z209) 信阳师范学院青年科研基金项目(200955)
关键词 随机共振 自适应 频移变尺度 stochastic resonance adaptive FRSR
  • 相关文献

参考文献7

二级参考文献32

  • 1卢志恒,林建恒,胡岗.随机共振问题Fokker-Planck方程的数值研究[J].物理学报,1993,42(10):1556-1566. 被引量:21
  • 2赵文礼,郭丽红.随机共振及其微弱信号的自适应检测[J].电子测量与仪器学报,2006,20(5):21-25. 被引量:13
  • 3Fauve S, Heslot F. Stochastic resonance in a bistable system[J]. Phys Lett, 1983, 97(1,2) :5- 7.
  • 4F R Palomo, J M Quero, L G Franquelo. Intermodulation distortion measures in a stochastic resonance[J]. IEEE International Symposium.2002, 4(7) :505 - 508.
  • 5Zhao Wenli, Guo Lihong, Tian Fan, etal. The adaptive detection and application of weak signal based on stochastic resonance[ C]. Beijing: proceeding of the 2nd IEEE/ASME international conference, 2006,10(5) : 1 - 3.
  • 6[1]Gammaitoni L et al 1998 Rev.Mod.Phys.70 23
  • 7[2]Bulsara A R and Gammaitoni L 1996 Phys.Today 49 39
  • 8[3]Godivier X and Chapeau-Blondeau F 1997 Signal Proc.56 293
  • 9[6]Nicolis G and Prigogine I 1997 Self-Organization in Nonequilibrium System(New York:Wiley)
  • 10[10]Chapean-Blondeau F 2000 Phys.Rev.E 61 940

共引文献86

同被引文献32

  • 1林敏,黄咏梅.调制随机共振及其在微弱信号检测中的应用[J].传感器与微系统,2006,25(2):81-82. 被引量:12
  • 2冷永刚,王太勇,郭焱,吴振勇.双稳随机共振参数特性的研究[J].物理学报,2007,56(1):30-35. 被引量:55
  • 3Melanie W. Linear and widely linear filtering applied to iterative detection of generalized MIMO signals [-J]. Annales des Telecommunications, 2005, 60 (2) : 113- 117.
  • 4Benzi R, Sutera A, Vulpiani A. The mechanism of sto- chastic resonance[J]. Physica A, 1981,14 : 453-457.
  • 5Fabing D, Derek A. Binary modulated signal detection in a bistable receiver with stochastic resonance [J]. Physica A, 2007,376 : 173-190.
  • 6Chen Changyun, Ma Meihua, Zhao Bo,et al. Stochas- tic resonance algorithm applied to quantitative analysis for weak liquid chromatographic signal of pyrene in water samples[J]. International Journal of Environ- ment Analytical Chemistry, 2011,1 (91 ) : 112-119.
  • 7Wang Wei,Xiang Suyun, Xie Shaofei, et a l. An adap- tive single-well stochastic resonance algorithm applied to trace analysis of clenbuterol in human urine[J]. Molecules, 2012,17 : 1929-1938.
  • 8Li Lifang, Zhu Jianyang. Gravitational wave detec- tion: Stochastic resonance method with matched filte- ring[J]. Physica A ,2011,43(10) :2991-3000.
  • 9Feng Guo, Zhou Yurong. Stochastic resonance in a sto- chastic bistable system subject to additive white noise and dichotomous noise[J]. Physica A, 2009,388 : 3371- 3376.
  • 10Hasegawa Y, Arita M. Escape process and stochastic resonance under noise intensity {luctuation[J]. Physics Letters A, 2011,375 (39) :336-372.

引证文献2

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部