期刊文献+

IEO方法在求解哈密顿量能谱中的应用 被引量:2

Application of IEO method to solving energy spectrum of hamiltonian
下载PDF
导出
摘要 利用IEO方法,通过选取合适的不变本征算符,使之满足所谓的"本征算符方程",其本征值与体系的能隙对应;从而直接、方便地推导出体系的能谱.本文以有外场时双原子分子体系和光场非线性相互作用的两个哈密顿为例,介绍IEO方法在分子与原子物理中的应用. By introducing the IEO method and selecting the appropriate invariant eigenoperator, we obtain an invariant eigenoperator function, from which we can derive the corresponding eigenvalue, which is related with the energy level gap of the interesting Hamihonian. Thus we derive the spectrums of this system directly and conveniently. In order to test the present method, we take two examples for a diatomic molecules system with extra field and an optical nonlinear interaction Hamiltonian, and then obtain their corresponding energy level gaps.
作者 孙云 唐绪兵
出处 《大学物理》 北大核心 2010年第7期25-27,共3页 College Physics
关键词 不变本征算符 薛定谔方程 海森伯方程 invariant eigenoperator Sehrodinger equation Heisenberg equation
  • 相关文献

参考文献7

  • 1Schr~dinger E. Four Lectures on Wave Mechanics [ M ]. London and Glasgow: Blackie and Son Ltd, 1928.
  • 2周世勋.量子力学教程[M].北京:高等教育出版社,2002.3.
  • 3喀兴林.高等量子力学[M].北京:高等教育出版社,2001.308-326.
  • 4Heisenberg W. The Physical Principles of the Quantum Theory [M]. New York: Dover, 1930.
  • 5Fan Hong-yi, Li Chao. Invariant ' eigen-operator' of the square of Schrodinger operator for deriving energy-level gap [J]. Phys Lett A, 2004, 321:75.
  • 6Fltlgge S. Practical Quantum Mechanics [ M ]. Berlin: Springer-Verlag, 1974.
  • 7Louise11 W H. Quantum Statistical Properties of Radiation [M]. New York: Wiley, 1973.

共引文献31

同被引文献11

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部