摘要
颤振方程在频率内的求解方法是通过状态方程中实矩阵的特征根和特征矢量求解来完成的。通过直接求解颤振方程中的复矩阵来计算颤振频率和颤振速度的,同时详细推导了一般复矩阵的特征根和特征矢量的计算过程。最后利用复矩阵求解特征根和特征矢量的原理,用P-K法解决了颤振方程中颤振问题。
Flutter equations in frequency domain, is solved by using of solutions of eigenvalues and eigenvectors of a real matrix in a state-space form. However, in this paper a general complex matrix from the flutter equation is used to compute directly the flutter frequencies and flutter speeds. Furthermore, the eigenvalues and eigenvectors of a gener- al complex matrix are derived in detail. Finally, according to the solving principle of eigenvalues and eigenvectors of a general complex matrix, a practical flutter problem is solved through P-K method.
出处
《机械设计与研究》
CSCD
北大核心
2010年第4期12-14,共3页
Machine Design And Research
关键词
颤振方程
复矩阵
特征根:特征矢量
特征根追寻技术
flutter equation
complex matrix
eigenvalue
eigenvector
technique for eigenvalue tracking