期刊文献+

一般复矩阵特征根和特征矢量求解及运用

Eigenvalue and Eigenvector Solutions of a General Complex Matrix and Its Simulating Application
原文传递
导出
摘要 颤振方程在频率内的求解方法是通过状态方程中实矩阵的特征根和特征矢量求解来完成的。通过直接求解颤振方程中的复矩阵来计算颤振频率和颤振速度的,同时详细推导了一般复矩阵的特征根和特征矢量的计算过程。最后利用复矩阵求解特征根和特征矢量的原理,用P-K法解决了颤振方程中颤振问题。 Flutter equations in frequency domain, is solved by using of solutions of eigenvalues and eigenvectors of a real matrix in a state-space form. However, in this paper a general complex matrix from the flutter equation is used to compute directly the flutter frequencies and flutter speeds. Furthermore, the eigenvalues and eigenvectors of a gener- al complex matrix are derived in detail. Finally, according to the solving principle of eigenvalues and eigenvectors of a general complex matrix, a practical flutter problem is solved through P-K method.
作者 王磊 董文俊
出处 《机械设计与研究》 CSCD 北大核心 2010年第4期12-14,共3页 Machine Design And Research
关键词 颤振方程 复矩阵 特征根:特征矢量 特征根追寻技术 flutter equation complex matrix eigenvalue eigenvector technique for eigenvalue tracking
  • 相关文献

参考文献5

  • 1G T S Done.Pint and Future Progress in Fixed and Rotary Wing Aeroelasticity[J].Aeronautical Journal,1996,100 (7):269-279.
  • 2W P Jennings,M A Berry.Effect of Stabilizer Dihedral and Static Lift on T-tail Flutter[J].Journal of Aircraft,1977,15(1):364-367.
  • 3Louw H van Zyl.Use of Eigenvsetors in the Solution of the Flutter Equation[J].J.AIRCRAFT,1992,30(4):553-554.
  • 4K L Lai,E P C Koh and H M Tsai.Flutter Computations of Complex Configurations Using Cartesian Grids[C] //4A.th AIAA Aerospace Sciences Meeting and Exhibit,Reno USA,2006.
  • 5谢长川,胡薇薇,杨超.颤振分析中的特征值排序问题[J].数学的实践与认识,2007,37(18):141-146. 被引量:8

二级参考文献1

  • 1陈维桓编著.微分流行初步(第二版)[M].高等教育出版社,2001,8.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部