期刊文献+

基于实测数据的STAP的权值计算算法性能比较

The Performance Comparison of Space-Time Adaptive Processing Algorithms Based on Mountaintop Data
下载PDF
导出
摘要 空时自适应处理(STAP)的权值求解是其计算最密集的部分,由于机载雷达回波数据动态范围很大,导致传统的采样协方差矩阵求逆(SMI)方法数值稳定性较差,相对而言基于QR分解的采样矩阵求逆算法(QRD-SMI)在系统动态范围要求和并行性上具有优势。为了寻求在STAP工程实现时采用QRD-SMI的理论依据,分析了采用这两种不同算法的STAP处理方法,比较了二者的计算量,用MountainTop数据比较研究了2种方法的性能。实验结果表明这2种方法均具有良好的杂波、干扰抑制性能,传统的SMI算法在杂波抑制性能上较QRD-SMI算法有一定的优势,而QRD-SMI算法对"目标消除效应"较SMI算法有更强的稳健性,综合比较算法性能、数值特性以及可并行实现性,QRD-SMI更适合在STAP的工程实现时采用。 The weight computation is the most intensive computational part of the space-time adaptive processing(STAP).The traditional sample matrix inverse(SMI) algorithm has a poor numerical stability due to that the dynamic range of the space-time snapshots is great,relatively speaking,the QR decomposition based SMI(QRD-SMI) algorithm has a better numerical characteristic and parallelism,which may suit for this condition.For the purpose of real time implementation of STAP,the performance comparison of STAP with two weight computational algorithms is presented.The test results show that both algorithms have satisfactory performances in resisting clutter and jamming,the traditional SMI algorithm has a better performance in clutter rejection,but QRD-SMI algorithm shows a stronger robustness to the effect of target self-nulling.Through comparing the above two algorithms in algorithm performances,numerical characteristics and parallelism in a comprehensive way,the QRD-SMI algorithm is more suitable for real time implementation of STAP.
出处 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2010年第4期62-67,共6页 Journal of Air Force Engineering University(Natural Science Edition)
基金 陕西省自然科学基础研究基金资助项目(2010JQ8028) 西安市科技计划资助项目(CXY1008(5)) 电讯工程学院博士启动基金资助项目(DG080806)
关键词 机载预警雷达 杂波抑制 STAP MountainTop数据 AEW radar clutter rejection STAP MountainTop data
  • 相关文献

参考文献7

  • 1Farina A,Timmoneri L.Real-time STAP Techniques[J].Electrnics & Communication Engineering Journal,1999,11(1):13-22.
  • 2Melvin W L,Showman G A,Hersey R K.Adaptive Radar:Beyond the RMB Rule[C] //Radar Conference.Rome:IEEE,2008:1-8.
  • 3Ries P,Neyt X,Lapierre F D,et al.Fundamentals of Spatial and Doppler Frequencies in Radar STAP[J].Aerospace and Electronic Systems,2008,44(3):1118-1135.
  • 4Teixeira C M.Performance Analysis of Post-Doppler STAP[C] //The 42nd Asilomar Conference on Signals,Systems and Computers.Monterey,CA:IEEE Signal Processing Society,2008:551-555.
  • 5Saleh O,Adve R S,Riddolls R J.Fast fully Adaptive Processing:A Multistage STAP Approach[C] //2009 IEEE Radar Conference.Pasadena,CA:IEEE,2009:1-6.
  • 6Melvin W L.A STAP Overview[J].IEEE AES Magazine,2004,19(1):19-35.
  • 7范西昆,王永良,陈辉.机载雷达空时自适应处理的实时实现[J].电子与信息学报,2006,28(12):2224-2227. 被引量:4

二级参考文献4

  • 1王永良.空时自适应信号处理[M].北京:清华大学出版社,2001..
  • 2Hwang K,Xu Z,Arakawa M.Benchmark evaluation of the IBM SP2 for parallel signal processing.IEEE Trans.on Parallel and Distributed Systems,1996,7(5):522-535.
  • 3Lebak.JM,Bojanczyk A W.Design and performance evaluation of a portable parallel library for Space-Time Adaptive Processing.IEEE Trans.on Parallel and Distributed Systems,2000,11(3):287-298.
  • 4Rajan K,Patnik L M.Implementation of STAP algorithms on IBM SP2 and on ADSP 21062 dual digital signal processor systems.Microprocessors and Microsystems,2003,5(4):221-227.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部