期刊文献+

具有时滞的捕食-食饵系统的Hopf分支分析

Hopf Bifurcation Analysis in a Delayed Predator-prey System
下载PDF
导出
摘要 研究一类具有时滞的阶段结构捕食-食饵系统。首先讨论正平衡点的稳定性及局部Hopf分支出现的条件;然后通过分析系统关于正平衡点的线性变分方程的特征根来研究系统在正平衡点的稳定性,应用泛函微分方程的局部Hopf分支理论给出了该模型出现周期解的条件;根据全局Hopf分支存在定理,建立了捕食-食饵系统全局Hopf分支存在性;最后通过数值模拟进行验证。 A predator-prey system with stage-structure for the prey and time delay due to the gestation of the predator is considered.It is found that the bifurcation occurs when the delay varies and passes a sequence of critical values.Global existence of periodic solutions is established using a global Hopf bifurcation theorem for FDE and a Bendixson criterion for high dimensional ODE.
出处 《嘉应学院学报》 2010年第8期20-25,共6页 Journal of Jiaying University
关键词 捕食-食饵系统 HOPF分支 周期解 全局存在性 predator-prey system Hopf bifurcation periodic solution global existence
  • 相关文献

参考文献8

  • 1XU R,MA Z.The effect of stage-structure on the permanence of a predator-prey system with time delay[J].Applied Mathematics and Computation,2007(189):1164-1177.
  • 2HASSARD B D,KAZARINOFF N D,WAN Y H.Theory and Application of Hopf Bifurcation[M].Cambridge:Cambridge University Press,1981.
  • 3LI M Y,MULDOWNEY J.On Bendixson's Criterion[J].Differential Equation,1994(106):27-39.
  • 4WEI J J,LI M Y.Global existence of periodic solutions in a tri-neuron network model with delays[J].Physica D,2004(198):106-119.
  • 5HALE J.Theory of Functional Differential Equations[M].Heidelberg:Springer-Verlag,1971.
  • 6WEI J J,LI M Y.Hopf bifurcation analysis in a delayed Nicholson blowflies equation[J].Nonlinear Analysis,2005(60):1351-1367.
  • 7WU J H.Symmetric functional differential equations and neural networks with memory[J].Trans.Amer.Math.Soc,1998(350):799-4838.
  • 8RUAN S G,WEI J J.On the zeros of transcendental functions with applications to stability of delay differential equations with two delays[J].Mathematical Analysis,2003(10):863-874.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部