摘要
设G为有限群,称G的子群H为ss-置换子群,如果存在G的次正规子群B使得G=HB,且H与B的任意Sylow子群可以交换,即对任意X∈Syl(B)有XH=HX.利用子群的ss-置换性来研究有限群的结构,得到有限群超可解的两个充分条件.
A subgroup H of a finite group G is called to be ss-permutable in G if G has a subnormal subgroup B such that HB = G and HS = SH for any Sylow subgroup S of B.We fix in every non-cyclic Sylow subgroup P of G a subgroup D satisfying 1 |D| |P| and study the structure of G under the assumption that all subgroups H with |H| = |D| are ss-permutable in G.
出处
《纯粹数学与应用数学》
CSCD
2010年第4期587-596,共10页
Pure and Applied Mathematics
基金
国家自然科学基金(10771132)
SGRC(G2310)
上海市教委重点学科建设项目(J50101)
关键词
ss-置换子群
s-置换子群
超可解群
ss-permutable subgroups
s-permutable subgroups
supersolvable groups