期刊文献+

半群作用Li-Yorke对的存在性 被引量:1

On Li-Yorke pairs of semigroup actions
下载PDF
导出
摘要 设X为紧度量空间,T为半群,本文研究了动力系统(X,T)上Li-Yorke对的存在性问题,证明了当(X,T)拓扑可迁且包含周期点时,在(X,T)上存在无限scrambled集.另外,列举了一些不包含Li-Yorke对的动力系统. For a compact metric space X and a semigroup T,the existence of Li-Yorke pairs in dynamical system(X,T) is discussed.It is proved that if(X,T) is transitive and contains periodic points,then there is an infinite scrambled set in(X,T).In addition,some dynamical systems containing no Li-Yorke pair are illustrated.
作者 苏郇立
出处 《纯粹数学与应用数学》 CSCD 2010年第4期608-614,共7页 Pure and Applied Mathematics
基金 江苏省高校自然科学基金(08KJD110016)
关键词 Li-Yorke对 邻近 渐近 scrambled集 Li-Yorke pairs proximal asymptotic scrambled set
  • 相关文献

参考文献9

  • 1Li Tianyan, Yorke J. Period three implies Chaos[J]. Amer. Math. Monthly, 1975,82:985-992.
  • 2廖公夫,汪威,范钦杰.一类非本原代换与混沌[J].数学年刊(A辑),2009,30(2):183-188. 被引量:6
  • 3Cairns G, Davis G, Elton D, et al. Chaotic group actions[J]. L'Ens. Math., 1995,41:123-133.
  • 4Devaney R. An Introduction to Chaotic Dynamaical Systems[M]. New York: Addison-Wesley, 1989.
  • 5Naolekar A, Sankaran P. Chaotic group actions on manifolds[J]. Topology Appl., 2000,107:233-243.
  • 6Blanchard F, Durand F, Maass A. Constant-length substitutions and countable scrambled sets[J]. Nonlin earity., 2004,17:817-833.
  • 7Huang Wen, Ye Xiongdong. Devaney's chaos or 2-scattering implies Li-Yorke's chaos[J]. Topology Appl., 2002,117:259-272.
  • 8David, Ellis B, Ellis R, Kolganova A, et al. The Topological dynamics of semigroup actions[J]. Tran. Amer. Math. Soc., 2000,353(4):1279-1320.
  • 9Anslander J. Minimal Flows and Their Extensions[M]. Amsterdam: North-Holland Math. Stud., 1988.

二级参考文献2

共引文献5

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部