期刊文献+

多重集划分快速生成算法

Fast Algorithm for Generating Multiset Partitions
下载PDF
导出
摘要 通过引入两种新结构:有序搜索树和向量进制运算,设计了多重集划分和多重集k划分的有效非递归生成算法,并对算法的正确性和有效性进行了分析.算法可以在划分数的线性时间复杂度内生成所有划分,并且在平均意义下可以用常量时间由一个划分生成下一个划分.同时,该算法可用于整数拆分、普通集合划分以及其它组合生成问题。 Effective Generation of multiset partitions has many practical applications.The partition of multiset is cleverly translated into the unordered split of integer vector in this article.Through the introduction of two new structures,the ordered search tree and the vector-based operation,the effective generation of non-recursive algorithms for the partition of multiset and multiset k-partitions is thus developed,the correctness and validity of which is also analyzed.The said algorithm is capable of generating all multiset partitions within the linear time complexity of number partitions,and in an average sense,by use of a constant time any partition can be generated by some other partition.Also such an algorithm can find applications in solving problems of combinational generation like integer splits and set partitions.
作者 牟廉明
出处 《内江师范学院学报》 2010年第8期26-31,共6页 Journal of Neijiang Normal University
基金 四川省教育厅教改资助项目(06-511-177) 四川省科技厅应用基础研究基金资助(07JY029-125) 内江师范学院教改资助项目(JG200904-154),内江师范学院自然科学基金(08NJZ-1)
关键词 多重集划分 向量拆分 向量进制 有序搜索树 multiset partitions vector partitions vector-based system ordered search tree
  • 相关文献

参考文献14

  • 1Wayne DB. Multiset theory [J]. Notre Dame Journal of Logic, 1989, 30(1):36-65.
  • 2Poplin P L. The Semiring of Multisets [D]. North Carolina State University, 2000.
  • 3Singh D, Singh J N. Some Combinatorics of Multisets [J]. International Journalof Mathematical Education in Science and Technology, 2003, 34(4):489-499.
  • 4Miyamoto S. Two Images and Two Cuts in Fuzzy Multisets [C]. In:Proceedings of the 8th International Fuzzy Systems Association World Congress (IFSA 99), 1999 : 1047-1051.
  • 5Krishinamwithy, E. V.. Rule-based Multiset Programming Paradigm: Applications to Synthetic Biology[R]. Computer Sciences Laboratory, Austrialian National University, Carberra, ACT 0200, Australia, 2005.
  • 6Knuth D E. The Art of Computer Programming:4[EB/OL]. [2008-06-08 ] http://www, cs. utsa. edu/ wagner/ knuth/.
  • 7Kawano S , Nakano S. Constant time generation of set partition [J]. IEICE Trans. Fundamentals, 2005, (4):930-934.
  • 8牟廉明.有限集合划分的快速生成算法[J].内江师范学院学报,2009,24(10):73-75. 被引量:3
  • 9牟廉明.有限多重集的运算及性质[J].内江师范学院学报,2009,24(4):5-8. 被引量:2
  • 10Bender E A, Devitt J S, Richmond L B. Partitions of multisets II [J]. Discrete Mathematics, 1984, 50: 1-8.

二级参考文献7

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部