期刊文献+

基于状态空间神经网络的短期公交调度模型 被引量:1

Short Term Bus Dispatching Model Based on the State Space Neural Networks
下载PDF
导出
摘要 本文从公交线路状态时空变化规律的角度出发,讨论了应用状态空间神经网络模型解决短期公交调度问题的方法。采用能描述实际公交线路状态(包括客流状态以及车辆运行速度等)的网络拓扑结构,结合前一时段的公交线路状态,预测下一时段的状态并选择与其相适应的调度方案。本文以南京市某公交线路的数据作为实例进行模型应用,与BP神经网络和AMRA模型的对比结果显示状态空间神经网络模型能在短期内更好地针对客流空间、时间变化对公交发车间隔进行调整,模型预测精度高,自适应性强,值得推广应用。 This paper discussed the solution of bus dispatching in short terms using state space neural networks(SSNN) according to the spatial and temporal variation law of bus lines. Utilizing the state of bus line in the previous interval,and the SSNN's network topology,which is derived from the physical state of bus line,the ability to predict the state in the next interval and the corresponded optimal dispatching scheme were got. Themodel performance was tested with a set public transit data in Nanjing. And the result was compared with those from BP neural networks and ARMA model. Results of the comparison indicated that the model was better in adjusting bus departing interval based on passenger flow space and time variations,and predicting bus dispatching with higher precision.
机构地区 东南大学
出处 《交通运输工程与信息学报》 2010年第3期82-86,104,共6页 Journal of Transportation Engineering and Information
基金 国家科技支撑计划资助项目(2006BAJ18B03-02)
关键词 短期公交调度 状态空间神经网络 发车间隔 预测 Bus dispatching in short terms state space neural networks departing interval prediction
  • 相关文献

参考文献6

  • 1牛学勤,陈茜,王炜.城市公交线路调度发车频率优化模型[J].交通运输工程学报,2003,3(4):68-72. 被引量:59
  • 2Liu Hao,et al.Predicting urban arterial travel time with state-space neural networks and kalman filters[J].Transportation Research Record,2007,(1968) 99-108.
  • 3Van Lint J.W.C.,Hooqendoorn S.P.,Van Zuvlen H.J.Freeway travel time prediction with state-space neural networks modeling state-space dynamics with recurrent neural networks[J].Transportation Research Record,2002,(1811):30-39.
  • 4Pancratz A.Forecasting with dynamic regression models.probability and mathematical statistics[M].New York:Wiley,1991.
  • 5Messmer A.,Papageourgiou M.Automatic control methods applied to freeway network traffic[J].Automatica,1994,(30):691-702.
  • 6Hoogendoorn S.P.,Bovy P.H.L.Platoon-based multiclass modeling of multilane traffic flow[J].Networks and Spatial Economics,2001,(1):137-166.

二级参考文献2

  • 1陈茜.[D].南京:东南大学,2002.
  • 2贺中雄.模糊数学及其应用[M].天津:天津科学技术出版社,1985..

共引文献58

同被引文献6

  • 1Lemaitre L,Patyra M J,Mlynek D.Analysis and Design of CMOS Fuzzy Logic Controller in Current Mode.IEEE J ofSolid-State Circuits,1994,293,29(3):317-322.
  • 2Lu C.Theoret.Appl.Genet,1983,62:109-112.
  • 3Fridborg G,Eriksson T.Physiol Plant, 1975,34:306-308.
  • 4Hanower J, Pannetier C. In vitro vegetative propagation of the oil palm, Elaeie guieensis Jacq[M].Tokyo : Plant Tissue Culture.Abe Photo Printing Co.Ltd, 1982.
  • 5孙棣华,李永福,田川.基于多前车位置及速度差信息的车辆跟驰模型[J].系统工程理论与实践,2010,30(7):1326-1332. 被引量:20
  • 6游克思,孙璐,顾文钧.山区公路路侧安全定量化评价[J].交通运输工程与信息学报,2010,8(3):49-55. 被引量:15

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部