摘要
提出了基于神经网络的偏心受压构件偏心距增大系数η的计算方法,突破了传统的由实验数据拟合半理论半经验公式的思想,提供了一种全新的思路.应用该方法可以在结构CAD中建立一种开放型的知识库,为结构计算提供更为准确的依据.
Based on artificial neural network,this paper presents a new method of estimating the eccentricity magnification factor η of reinforced concrete columns.It breaks through the traditional idea of setting up semi theory and semi experience formulas based on experimental data, and provides a new different approach.According to the method,an opening knowledge base is established in engineering CAD and a more accurate result can be presented for structural calculation.
出处
《湖南大学学报(自然科学版)》
EI
CAS
CSCD
1999年第3期75-79,共5页
Journal of Hunan University:Natural Sciences
基金
国家自然科学基金
关键词
神经网络
偏心距增大系数
知识库
偏心受压构件
neural networks,eccentricity magnification factor η ,opening knowledge base