摘要
为了快速准确地计算GLONASS卫星坐标,通过对不同的卫星状态方程进行比较分析,给出一个准确的GLONASS卫星运动状态方程.以该状态方程为基础,提出了古典形式、龙格-库塔、基尔公式3种不同形式的龙格-库塔轨道积分方法,比较分析得出3种积分方法精度相当,但基尔公式的舍入误差较小.然后,以基尔公式为基础,给出了定步长和自动选择步长2种不同的积分方法的详细步骤.讨论了定步长的选择以及自动选择步长收敛值的取值,得到其最佳值在20~30之间.最后,利用GLONASS的广播星历对基于基尔公式的自动选择积分步长的龙格-库塔法进行精度分析,积分时间间隔为60min,积分误差小于3m.
In order to fix GLONASS(global navigation satellite system) satellites coordinate quickly and accurately,a correct GLONASS estate equation is given through comparing and analyzing different equations from different references.Then,different integral algorithm based on classical form,Runge-Kutta and Gill equation are put forward and compared.The accuracy of these methods are about the same but the rounding error of Gill is less.Detailed steps of Runge-Kutta based on Gill with fixed and automatic step length are introduced.The selection of fixed step length and convergence value of automatic step are discussed.The best convergence value is between 20 and 30.At last,the accuracy of GLONASS orbit Runge-Kutta integral algorithm by automatic step length based on Gill is analyzed using GLONASS broadcast navigation data.The integral error is less than 3m when integral time interval is 60 min.
出处
《东南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2010年第4期755-759,共5页
Journal of Southeast University:Natural Science Edition
基金
"十一五"国家科技支撑计划重点资助项目(2008BAJ11B05
2008BAJ11B01)
关键词
GLONASS
卫星坐标
状态方程
积分步长
龙格-库塔
global navigation satellite system
satellite coordinate
estate equation
integral step length
Runge-Kutta