期刊文献+

捷联惯导系统初始对准中IUPF的应用与设计 被引量:1

Application and design of iterative unscented particle filter for initial alignment of SINS
下载PDF
导出
摘要 针对大失准角条件下捷联惯导系统误差模型的非线性引起的初始对准误差问题,引入了粒子滤波技术.首先,利用加性四元数误差建立了大失准角条件下的系统误差模型.然后,将无迹变换算法和迭代算法引入粒子滤波方法中,提出了迭代无迹粒子滤波算法.并且,为了解决迭代无迹粒子滤波算法中由于粒子数量所导致的算法精度和算法实时性的矛盾,采用采样重要性重采样的方法对迭代无迹粒子滤波算法进行修正,提出了一种既具有迭代无迹粒子滤波精度又计算量较小的新的非线性滤波算法.最后,进行了半物理仿真和数字仿真,比较了经典粒子滤波、无迹粒子滤波和修正后的迭代无迹粒子滤波等多种方案的滤波效果.仿真结果表明,在大失准角条件下,采用修正后的迭代无迹粒子滤波方法可以有效提高初始对准精度和算法的实时性. The particle filtering is introduced to deal with the initial alignment error,which is caused by the non-linear model of strapdown inertial navigation system(SINS) with large misalignment angle.Firstly,on the basis of additional quaternion error,the error model of SINS is built up.Secondly,the iterative unscented particle filter(IUPF) based on unscented transformation(UT),iterative filtering and particle filtering is constructed.In order to solve the contradiction of precision and real-time caused by the particle quantity of IUPF,the idea of sampling importance resampling(SIR) is applied to improve IUPF.The corrected IUPF has not only the same accuracy as the IUPF but also lower computational cost than the IUPF.Finally,some schemes of initial alignment by respectively using a partical filter,a unscented particle filter,a corrected IUPF and so on are compared.The simulation results indicate that the precision and real-time of initial alignment can be improved by the corrected IUPF under large misalignment angle.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第4期760-765,共6页 Journal of Southeast University:Natural Science Edition
基金 "十一五"国家科技支撑计划重点资助项目(2008BAJ11B02) 江苏省博士后科研资助项目(0902012C)
关键词 捷联惯导系统 初始对准 加性四元数误差 迭代无迹粒子滤波 strapdown inertial navigation system(SINS) initial alignment additional quaternion error iterative unscented particle filter(IUPF)
  • 相关文献

参考文献10

  • 1Dmitriyev S P,Stepanov O A,Shepel S V.Nonlinear filtering methods application in INS alignment[J].IEEE Trans on Aerospace and Electronics Systems,1997,33(1):260-272.
  • 2Yu M J,Park H W,Jeon C B.Equivalent nonlinear error models of strpdown inertial navigation system[C]//AIAA Guidance,Navigation,and Control Conference.New Orleans,USA,1997:581-587.
  • 3Yu M J,Lee J G,Park H W.Comparison of SDINS in-flight alignment using equivalent error models[J].IEEE Trans on Aerospace and Electronics Systems,1999,35(3):1046-1054.
  • 4Julier S,Uhlmann J,Durrant-Whyte F.A new method for the nonlinear transformation of means and covariances in filters and estimatiors[J].IEEE Transactions on Automatic Control,2000,45(3):477-482.
  • 5魏春岭.非线性滤波与神经网络在导航系统中的应用研究[D].北京:北京航空航天大学自动化学院,2002.
  • 6张共愿,赵忠.粒子滤波及其在导航系统中的应用综述[J].中国惯性技术学报,2006,14(6):91-94. 被引量:6
  • 7李良群,姬红兵,罗军辉.迭代扩展卡尔曼粒子滤波器[J].西安电子科技大学学报,2007,34(2):233-238. 被引量:60
  • 8Julier S J,Uhlmann J K.Unscented filtering and nonlinear estimation[J].Proceedings of the IEEE,2004,92(3):401-422.
  • 9Djuric P M,Kotecha J H,Zhang Jianqui,et al.Particle filtering[J].IEEE Signal Processing Magazine,2003,20(5):19-38.
  • 10Liu Ying,Wang Benping,He Wang,et al.Fundamental principles and applications of particle filters[C]//Proceedings of the 6th World Congress on Intelligent Control and Automation.Dalian,China,2006,2:5327-5331.

二级参考文献22

  • 1辛云宏,杨万海.基于伪线性卡尔曼滤波的两站红外无源定位及跟踪技术[J].西安电子科技大学学报,2004,31(4):505-508. 被引量:10
  • 2李磊磊,陈家,斌谢玲,刘星桥,徐建华.粒子滤波方法在GPS/DR组合导航系统中的应用[J].微电子学与计算机,2004,21(10):97-99. 被引量:15
  • 3范典华.粒子滤波[J].中山大学研究生学刊(自然科学与医学版),2005,26(2):22-32. 被引量:11
  • 4[1]Gordon N,Salmond D.Novel approach to non-linear and non-Gaussian Bayesian state estimation[J].Proceedings of Institute Electric Engineering,1993,140 (2):107-113.
  • 5[2]Mac Cormick J,Blake A.A probabilistic exclusion principle for tracking multiple objects[C]//The 7th IEEE International Conference on Computer Vision.Kerkyra,1999:572-578.
  • 6[3]Carpenter J,Clifford P.Improved particle filter for nonlinear problems[J].IEE Proc of Radar,Sonar and Navigation,1999,146(1):2-7.
  • 7[4]Doucet A,Gordon N.Sequential Monte Carlo methods in practice[M].New York:Springer-Verlag,2001.
  • 8[5]Hammersley J M,Morton K W.Poorman's Monte Carlo[J].Journal of the Royal Statistical Society B,1954,16(1):23-38.
  • 9[6]Handschin J E.Monte Carlo techniques for prediction and filtering of non-linear stochastic processes[J].Automatica,1970,6(3):555-563.
  • 10[7]Beichl I,Sullivan F.The importance of important sampling[J].Computing in Science & Engineering,1999,1(2):71.

共引文献65

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部