期刊文献+

不同特性驾驶员指路标志信息认知差异 被引量:12

Difference of drivers in cognizing road signs information
下载PDF
导出
摘要 为了提供指路标志信息量合理配置的理论依据,设计了生理反馈试验,对不同特性驾驶员信息判读时的认知机理进行研究.首先获得驾驶员在标志信息判读任务中的反应时间和脑电信号;然后根据不同被试组在试验任务中的反应时间差异判断出最不利被试组;最后根据试验中被试者的脑电信号的近似熵分布结合利用单因素方差分析,探讨不利被试组与其他2组被试的认知差异机理.结果表明:男性新手驾驶员为标志信息搜索试验中最不利被试组,其不同频率的脑电波的近似熵表征与另外2组被试出现显著差异,在复杂任务中其高频脑电波近似熵值下降明显,反映出消极认知心理.根据不同被试者的脑电近似熵分布形态可以判断出4个地名为指路标志最佳信息量分界线. To provide a basis for properly disposing the amount of information of road guide signs,cognition mechanisms of different drivers in cognizing road guide signs tests were studied with physical-feedback tests.Firstly,reaction time and electroencephalography(EEG) signals of drivers in tests were recorded;then,the most unfavorable group of subjects during tests was differentiated by analyzing the difference of reaction time;finally,mechanisms of cognition difference among the most unfavorable group and other two groups were discussed based on the distribution and single factor variance analysis of EEG approximate entropy.The results show that male novice drivers are the most unfavorable subjects in searching information tests.Their characterizations of EEG with different frequencies are remarkably different from the other two groups'.It is also found that the male novices act negatively in complex tests since their values of approximate entropy of high frequency EEG drop distinctly.In accordance with the distribution of different groups' EEG approximate entropy,4 names seem to be the most appropriate ambit of information amount of road signs.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第4期871-875,共5页 Journal of Southeast University:Natural Science Edition
基金 江苏省自然科学基金资助项目(BK2008308)
关键词 近似熵 驾驶员特性 标志牌信息判读 生理反馈系统 脑电波 approximate entropy drivers' characteristics information interpretation of road guide sign physical-feedback system electroencephalography
  • 相关文献

参考文献10

  • 1Nagarajan R.Quantifying physiological data with Lempel-Ziv complexity-certain issues[J].IEEE Transactions on Biomedical Engineering,2002,49(11):1371-1373.
  • 2Caswell Schuckers S A,Raphisak P.Distinction of arrhythmias with the use of approximate entropy[C]//Computers in Cardiology.Hannover,Germany,1999,26:347-350.
  • 3Xu Lisheng,Wang Kuanquan,Zhang David,et al.Adaptive base line wander removal in the pulse waveform[C]//Proceedings of the 15th IEEE Symposium on Computer-Based Medical Systems.Washington,DC,USA,2002,6:143-148.
  • 4Yeragani V K,Srinivasan K,Vempati S,et al.Fractal dimension of heart rate time series:an effective measure of autonomic function[J].Journal of Applied Physiology,1993,75(6):2429-2438.
  • 5Kolmogorov A N.Three approaches to the quantitative definition of information[J].International Journal of Computer Mathematics,1968,2(1/2/3/4):157-168.
  • 6Pincus S M.Approximate entropy:a complexity measure for biological time series data[C]//IEEE Proceedings of the Northeast Conference on Bioengineering.Piscataway,NJ,USA,1991:35-36.
  • 7Pincus S M.Approximate entropy as a measure of system complexity[J].Proc Natl Acad Sci USA,1991,88(6):2297-2301.
  • 8Yang Fusheng,Hong Bo,Tang Qingyu.Approximate entropy and its application in biosignal analysis[M].New York,USA:IEEE Press,2001:72-91.
  • 9Rezek I A,Roberts S J.Stochastic complexity measure for physiological signal analysis[J].IEEE Trans on Biomedical Engineering,1998,45(9):1186-1191.
  • 10刘峰涛,贺国光.基于近似熵和统计复杂度的交通流复杂性测度[J].中国公路学报,2007,20(4):108-112. 被引量:19

二级参考文献20

共引文献18

同被引文献148

引证文献12

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部