摘要
给出了Cn中向量α在矩阵A下的最小零化多项式dA,α(x)的定义,并记LA(α)为由α,Aα,A2α,…生成的Cn的子空间,得到了如下结果:1.dA,α(x)存在且唯一;2.dA,α(x)的根都是A的特征值;3.当α≠0时,dA,α(x)无重根α可以表示成的A不同特征值的特征向量之和;4.设ε1,ε2,…εn是Cn的一个基,则A可以对角化dA,εi(x)无重根,i=1,2,…,n.
The paper has defined the concept of the minimal annihilation polynomial d A,α (x) of a vector α under a matrix A, and has denoted the generating subspace by the vectors α,Aα,A 2α,…,A n-1 α by L A(α).At last,the following results have been obtained:1.d A,α (x) is unique existence. 2.Every root of d A,α (x) is an eigenvalue of the matrix A. 3.Let α≠0.Then d A,α (x) has no multiple roots if and only if the sum of eigenvectors corresponds to the different eigenvalues of the matrix A. 4.Let ε 1,ε 2,…,ε n base of the lineor space C n and A∈M n(C).Then the matrix A is a diagonalization matrix if and only if no d A,ε i (x) has repeated roots for i=1,2,…,n.
出处
《淮海工学院学报(自然科学版)》
CAS
1999年第2期4-6,共3页
Journal of Huaihai Institute of Technology:Natural Sciences Edition