期刊文献+

John基等价条件的推广

Generalization for Equivalence of John Bases
下载PDF
导出
摘要 John基在凸体几何分析中占有重要地位,是研究凸体包含最大体积椭球的基础.将John基的3个等价条件推广到双John基,并给出证明. John bases occupy an important place in convex geometry, and are fundamental in studying maximal ellipsoid contained in convex. In this paper, we extend John bases to generalized John bases and present the proof.
作者 郑敏 冷岗松
机构地区 上海大学理学院
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第4期380-382,共3页 Journal of Shanghai University:Natural Science Edition
关键词 John基 接触对 极体 双John基 John bases contact pair polar double John bases
  • 相关文献

参考文献8

  • 1BALL K.Ellipsoids of maximal volume in convex bodies[J].Geometry Dedicata,1992,41(2):241-250.
  • 2BALL K.Volumes of sections of cubes and related problems[M] // Geometric Aspects of Functional Analysis.Berlin:Springer-Verlag,1989:251-260.
  • 3GIANNOPOLOS A,PERISSINAKI I,TSOLOMITIS A.John's theorem for an arbitrary pair of convex bodies[J].Geometry Dedicate,2004,84:63-79.
  • 4LUTAW E,YANG D,ZHANG G.A new ellipsoid associated with convex bodies[J].Duke Mathematical Journal,2000,104(3):248-250.
  • 5BALL K.An elementary introduction to modern convex geometry[M] // Flavors of Geometry.Cambridge:Cambridge University Press,1997:1-13.
  • 6GORDON Y,LIVAK A E,MEYER M,et al.John's decomposition in the general case and applications[J].Journal Differential Geometry,2004,68(1):99-119.
  • 7GRUBER P M,SCHUSTER F E.An arithmetic proof of John's ellipsoid theorem[J].Archivder Mathematike,2005,85(1):82-88.
  • 8GARDNER R J.Geometric tomography[M].2nd ed.Cambridge:Cambridge University Press,2006:9-10,188.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部