期刊文献+

高频超声降解偶氮染料活性红MX-5B废水的研究 被引量:10

Research in High Frequency Ultrasonic for Degradation of Azo Dye Wastewater Containing MX-5B
原文传递
导出
摘要 采用高频超声降解偶氮染料活性红MX-5B模拟废水,考察了溶液初始pH值、超声参数、曝气、Fe2+浓度以及多频效应对活性红MX-5B超声降解过程的影响,并初步探讨了活性红MX-5B的超声降解规律.结果表明,酸性条件下,高频超声能有效降解MX-5B,当pH=3.5,f=418.3kHz,P=69W时,反应180 min后,MX-5B模拟废水脱色完全.微量Fe2+与超声空化产生的H2 O2形成类Fenton体系,可强化MX-5B的脱色反应.曝气有利于MX-5B脱色,但影响不大.多频超声对MX-5B的脱色效果优于单频超声处理效果.超声降解MX-5B以自由基氧化机制为主,并遵循表观一级反应动力学.染料分子中的NN形成的共轭发色体系已完全破坏,芳香结构也大部分遭到了羟基自由基的破坏. The degradation of azo dye wastewater,containing MX-5B,was investigated by using high frequency ultrasonic irradiation.The effect of different factors like the initial pH of solution,sonolysis parameters,air-blowing,Fe2 + concentration were studied,the synergistic action of complex frequency and the mechanism of degradation was explored primarily.The results show that MX-5B in aqueous solution can be degraded efficiently by ultrasonic irradiation,when the pH 3.5,ultrasonic frequency 418.3kHz,ultrasonic power 69 W,color removal rate up to 100% in 180 min.Adding of Fe2 + and blowing air had some effects.The results also indicated that radical-oxidation controlled the ultrasonic decompose of MX-5B and MX-5B ultrasonic removal was observed to behave as pseudo-first-order kinetics under different experimental conditions tested in the present work.Comparison of UV-Vis absorption spectrums before and after treatment showed that all of the conjugate structure and part of aromatic structure were destroyed after being ultrasonic irradiation.
出处 《环境科学》 EI CAS CSCD 北大核心 2010年第9期2092-2099,共8页 Environmental Science
基金 深圳市科技计划项目(06KJD047)
关键词 高频 超声 偶氮染料 降解 废水 high frequency ultrasonic azo dye degradation wastewater
  • 相关文献

参考文献15

  • 1葛建团,曲久辉,徐敏.Fe(Ⅱ)强化声化学降解偶氮染料酸性红B的研究[J].环境科学,2004,25(4):90-93. 被引量:9
  • 2Behnajady M A, Modirshahla N, Shokri M, et al. Effect of operational parameters on degradation of Malachite Green by ultrasonic irradiation [ J ].Ultrasonics Sonoehemistry, 2008, 15 (6) : 1009-1014.
  • 3Sun J H, Sun S P, Wang G L, et al. Degradation of azo dye Amido black 10B in aqueous solution by Fenton oxidation process [ J ]. Dyes and Pigments, 2007, 74 (3) : 647-652.
  • 4Inoue M, Okada F, Sakurai A, et al. A new development of dyestuffs degradation system using ultrasound [ J]. Ultrasonics Sonochemistry, 2006, 13 (4) : 313-320.
  • 5Li J T, Li M, Li J H, et al. Decolorization of azo dye direct scarlet 4BS solution using exfoliatcd graphite under ultrasonic irradiation [ J ].Ultrasonics Sonochemistry, 2007, 14 ( 2 ) : 241- 245.
  • 6Maezawa A, Nakadoi H, Suzuki K, et al. Treatment of dye wastewater by using photo-catalytic oxidation with sonication [ J ]. Ultrasonics Sonochemistry, 2007, 14 ( 5 ) :615-620.
  • 7An T C, Gu H F, Xiong Y, et al. Decolorization and COD removal from reactive dye-containing wastewater using sonophotocatalytic technology [ J ]. Journal of Chemical Technology and Biotechnology, 2003, 78 ( 11 ) : 1142-1145.
  • 8Inoue M, Masuda Y, Okada F, et al. Degradation of bisphenol A using sonochemical reactions [ J]. Water Research, 2008, 42 (6) :1379-1386.
  • 9Manousaki E, Psillakis E, Kalogerakis N, et al. Degradation of sodium dodecylbenzene sulfonate in water by ultrasonic irradiation [ J ]. Water Research, 2004, 38 ( 17 ) :3751-3759.
  • 10Goel M, Hu H Q, Mujumdar A S, et al. Sonochemical decomposition of volatile and non-volatile organic compounds--a comparative study [ J ]. Water Research, 2004, 38 ( 19 ) :4247- 4261.

二级参考文献43

  • 1[1]Suslick K S. Sonochemistry: Its Chemical, Physical and Biological Effects[M]. New York: VCH Publishers Inc, 1988. 138.
  • 2[2]Suslick K S. The Chemical Effects of Ultrasound[J]. Sci. Am., 1989, 260: 80~86.
  • 3[3]Fisher C, Hart E, Henglein A. Ultrasonic Irradiation of Water in the Presence of 16,18O2: Isotope Exchange and Isotopic Distribution of H2O2[J]. J. Phys. Chem., 1986, 90: 1954~1956.
  • 4[4]Ghaly M, Haertel G, Mayer R, Haseneder R. Aromatic Compounds Degradation in Water by Using Ozone and AOPs. A Comparative Study: o-Nitrotulune as a Model Substrate[J]. Ozone Sci. Eng., 2001, 23: 127~138.
  • 5[5]Ghaly M, Haertel G, Mayer R, Haseneder R. Photochemical Oxidation of p-Chlorophenol by UV/H2O2 and Photo-Fenton Process. A Comparative Study[J]. Waste Manage, 2001, 21: 41~47.
  • 6[6]Carr A, Baird R. Mineralization as a Mechanism for TOC Removal: Study of Ozone /Ozone-Peroxide Oxidation Using FT-IR[J]. Water Res., 2000, 34: 4036~4048.
  • 7[7]Perkowski J, Kos L, Ledakowicz S. Advanced Oxidation of Textile Wastewaters[J]. Ozone Sci. Eng., 2000, 22: 535~550.
  • 8[8]Trapido M, Kallas J. Advanced Oxidation Processes for the Degradation and Detoxification of 4-Nitrophenol[J]. Environ. Technol., 2000, 21: 799~808.
  • 9[9]Perkowski J, Kos L, Ledakowicz S. Advanced Oxidation Processes of Real Textile Wastewaters[J]. Environ. Prot. Eng., 2000, 26: 17~31.
  • 10[10]Walling C, Kato S. The Oxidation of Alcohols by Fenton's Reagent: The Effect of Copper Ion[J]. J. Am. Chem. Soc., 1971, 93: 4275~4281.

共引文献15

同被引文献83

引证文献10

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部