摘要
主要得到了以下结果:设是一族平面区域D内的亚纯函数,a,b为有穷非零复数,k为大于1的整数.如果对于F中的任一元素f,满足f-a的零点重数至少为k,f(z)=a f(k)(z)=a,f(k)(z)=b f(k+1)(z)=b,则当k≥3时,F为正规族,k=2并且a/b≠4时,F为正规族.并且给出了1个例子说明条件a/b≠4是必要的.
This paper mainly obtains the following result:let F be a family of meromorphic functions on a domain D in the complex plane,a,b be finite non-zero complex numbers such that f-a has only zeros multiplicity at least k for each f in F.If for each f in F,f(z)=a f(k)(z)=a,f(k)(z)=b f(k+1)(z)=b,then for k≥3,F is normal in D and for k=2 and a/b≠4,F is normal in D.An example is given to illustrate the condition of a/b≠4 is necessary.
出处
《河南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2010年第5期34-37,共4页
Journal of Henan Normal University(Natural Science Edition)
基金
国家自然科学基金(10271122)
关键词
亚纯函数
正规族
分担值
meromorphic functions
normal family
sharing values