期刊文献+

基于平面聚类势函数法的欠定混合信号盲分离 被引量:2

Underdetermined blind sources separation using the potential function method based on plane clustering
下载PDF
导出
摘要 针对不充分稀疏欠定混合信号盲分离,提出了一种基于超平面聚类的势函数法来估计源信号个数和混合矩阵。该方法在源信号个数未知的情况下,利用聚类平面法线向量构成势函数,通过估计势函数的局部最大值来估计聚类平面的法线向量,然后再通过估计聚类平面的交线来实现混合矩阵的估计。为了提高算法对异常值的鲁棒性,不直接估计势函数的局部最大值,而是采用聚类算法来估计势函数的局部最大值。计算机仿真试验证实了该算法的有效性及其较好的性能。 A potential function method is proposed to estimate the number of sources and the mixing matrix for the problem of underdetennined blind separation of insufficiency sparse sources based on the hyperplane clustering algorithm. When the number of sources is unknown, the normal vectors of the concentration hyperplanes can be obtained by estimating the local maxim of the potential function, and then the mixing matrix can be estimated by finding the intersection of the concentration hyperplanes. In order to increase the robustness to the outliers, the clustering algorithm is exploited to estimate the local maxim of the potential function instead of directly estimating the local maxim of the potential function. The simulation results show the validity and high performance of the algorithm.
作者 张烨 方勇
出处 《高技术通讯》 EI CAS CSCD 北大核心 2010年第8期810-815,共6页 Chinese High Technology Letters
基金 高等学校博士学科点专项科研基金(20060280003) 上海市优秀学科带头人基金项目(05XP14027) 上海市重点学科项目(T0102)资助
关键词 欠定盲源分离 稀疏信号 平面聚类 势函数 underdetennined blind source separation, sparse signal, plane clustering, potential function
  • 相关文献

参考文献3

二级参考文献18

  • 1章晋龙,谢胜利,何昭水.盲分离问题的可分性理论(英文)[J].自动化学报,2004,30(3):337-344. 被引量:6
  • 2李广彪,许士敏.基于源数估计的盲源分离[J].系统仿真学报,2006,18(2):485-488. 被引量:8
  • 3HE Zhaoshui XIE Shengli FU Yuli.Sparsity analysis of signals[J].Progress in Natural Science:Materials International,2006,16(8):879-884. 被引量:10
  • 4HE Zhaoshui XIE Shengli FU Yu.Sparse representation and blind source separation of ill-posed mixtures[J].Science in China(Series F),2006,49(5):639-652. 被引量:24
  • 5HY■ARINEN A,KARHUNEN J,OJA E.Independent Component Analysis[]..2001
  • 6GEORGIEV P,,THEIS F J,CICHOCKI A.Blind source separation and sparse component analysis of overcom- plete mixtures [C}[].IEEE ICASSP.2004
  • 7THEIS F J,PUNTONET C G,LANG E W.Median-based clustering for underdetermined blind signal proces- sing[].IEEE Signal Processing Letters.2006
  • 8BOFILL P,ZIBULEVSKY M.Underdetermined blind source separation using sparse representations net- works[].Signal Processing.2001
  • 9LEWICKI M,SEJNOWSKI T J.Learning overcomplete representations[].Neural Computation.2000
  • 10MITIANOUDIS N,STATHAKI T.Overcomplete source separation using Laplacian mixture models[].IEEE Signal Processing Letters.2005

共引文献32

同被引文献34

  • 1谢胜利,谭北海,傅予力.基于平面聚类算法的欠定混叠盲信号分离[J].自然科学进展,2007,17(6):795-800. 被引量:7
  • 2余先川,胡丹.盲源分离理论与应用[M].北京:科学出版社.2011:1.10.
  • 3Thiagarajan J J, Ramamurthy N R, Spanias A. Mixing matrix estimation using discriminative clustering for blind source sepa ration[J]. Digital Signal Processing, 2013, 23(1) :9 - 18.
  • 4Wang R J, Zhan Y J, Zhou H F. A method of underdetermined blind source separation in time domain[J]. International Jour hal of Electronics, 2012, 99(4) : 543 - 555.
  • 5Bradley P S, Mangasarian O L. k-plane clustering[J]. Journal of Global Optimization, 2000,16(1) : 23 - 32.
  • 6Georgiev P, Theis F J, Cichocki A. Sparse component analysis and blind source separation of underdetermined mixtures[J]. IEEE Trans. on Neural Networks, 2005, 16(4) :992-996.
  • 7ashizawa Y, Cichocki A, On-line h-plane clustering learning algo- rithm for sparse component analysis[C]//Proc, of the IEEE International Conference on Acoustics, Speech and Signal Pro- cessing, 2006:681 - 684.
  • 8Frigui H, Krishnapuram R. A robust competitive clustering algo rithm with applications in computer vision [J]. IEEE Trans. on Pattern Analysis Machine Intelligence, 1999, 21(5) : 450 - 465.
  • 9Zhang Y, Fang Y. A NMF algorithm for blind separation of uncor- related signals [C] //Proc. of the International Conference on Wavelet Analysis and Pattern Recognition ,2007: 999 - 1003.
  • 10Naini F M, Mohimani G H, Babaie-Zadeh M, et al. Estimating the mixing matrix in sparse component analysis(SCA) based on partial k dimensional subspace clustering [ J ]. Neurocompu- ting, 2008, 71:2330-2343.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部