期刊文献+

基于地形信息约束的地面目标纯方位跟踪方法

Bearing-only Tracking Algorithm for Ground Targets Based on Terrain Information Constraint
下载PDF
导出
摘要 基于改进纯方位跟踪一般方法的不稳定性。结合地形信息约束建立目标运动模型,提出一种带量测噪声的多方位测量的机动目标跟踪方法,在充分挖掘地形信息的基础上.引入伪测量并将其结合到目标状态方程和量测方程中.以改进量测信息的不连续性;然后,采用改进粒子滤波对受限运动目标的状态进行估计;最后进行的仿真分析表明,文中的方法不仅可以降低对观测者机动性的要求.而且可以提高目标状态估计的可观测性和跟踪精度。 For mitigating unstable behavior and low accuracy of common bearing-only tracking algorithm, the target motion models were built combined with terrain information constrain, and a new bearing-only tracking algorithm was proposed based on multibearing measurement with measurement noise. This method makes best use of terrain information and incorporates it into the equations of state and equations of measurement by using Pseudo-measurement, which raitigates discontinuity of measured information obtained by observer. Then, the improved particle filters were used for estimating the constrained moving target's state. The simulation results reveal that the method is useful, which can improve the estimation of observed state vector to improve tracking accuracy as well as lower requirement for the observer's maneuver.
出处 《弹箭与制导学报》 CSCD 北大核心 2010年第4期227-230,共4页 Journal of Projectiles,Rockets,Missiles and Guidance
关键词 纯方位跟踪 方位测量 伪测量 粒子滤波 bearing-only tracking bearing measurement pseudo-measurement particle filter
  • 相关文献

参考文献9

  • 1V Aidala, S Hammel. Utilization of modified polar coordinates for bearings-only tracking [J]. IEEE Transactions on, Automatic Control, 1983,28(3):283--294.
  • 2T Br'ehard. Estimation st equentielle et analyse de performances pour un probl'eme de filtrage non lin'eaire partiellement observ'e, Application "a la trajectographie par mesure d'angles[D]. Universit'e de Rennes I, 2005.
  • 3T Kirubarajan, Y Bar-Sralom, D Lerro. Bearings-only tracking of maneuvering targets using a batch-recursive estimator[J]. IEEE Transactions on, Aerospace and Electronic Systems, 2001,37 (3) : 770-- 780.
  • 4Y Bar-Shalom, T Kirubarajan, X Lin. Probabilistic data association techniques for target tracking with applications to sonar, radar and eo sensors[J]. IEEE Transactions on, Aerospace and Electronic Systems Magazine, 2005,20(8):37--56.
  • 5童世明,金宏斌,杨龙坡,吴小平.粒子滤波在机动目标跟踪中的应用[J].微计算机信息,2007,23(19):260-261. 被引量:6
  • 6M S Arulampalam, B Ristic, N Gordon, et al. Bearingsonly tracking of maneuvering targets using particle filters [J]. EURASIP Journal on Applied Signal Processing, 2004:2351--2365.
  • 7徐敬,王秀坤,胡家升,赵晶,孙永侃.基于约束的单舰纯方位跟踪算法[J].系统工程与电子技术,2002,24(9):123-125. 被引量:4
  • 8B Pannetier, K Benameur, V Nimier, et al. VSIMM using road map information for a ground target tracking [C]// 2005 8th International Conference on, Information Fusion, vol. 1, 25--28 July 2005.
  • 9T Kirubarajan, Y Bar-Shalom, K Pattipati, et al. Ground target tracking with variable structure IMM estimator[J]. IEEE Transactions on, Aerospace and Electronic Systems, 2000,36 ( 1 ) : 26-- 46.

二级参考文献9

  • 1董峰,金宏斌,白晶.用Visual C++仿真实现卡尔曼滤波[J].微计算机信息,2005,21(06Z):147-149. 被引量:8
  • 2Song Taek L, Speyer Jason L. A Stochastic Analysis of a Modified Gain Extended Kalman Filter with Applications to Estimation with Bearings only Measurements[J]. IEEE Trans. on Automatic Control, 1985, AC-30(10):940-949.
  • 3Tremois O, Le Cadre P. Optimal Observer Trajectory in Bearings-only Tracking for Manoeuvring Sources[J]. IEE Proc. Radar, Sonar Navig., 1999,146(1): 31-39.
  • 4Passerieux J M, Van Cappel D. Optimal Observer Maneuver for Bearings-only Tracking[J]. IEEE Trans. on Aerospace and Electronic Systems, 1998, 34(3): 777-787.
  • 5Pachter M,Chandler P R.Universal Lineanzation Concept for Extended Kalman Filter[J].IEEE Trans.on Aerospace and Electronic Systems,1993,29(3):946-961.
  • 6Carpenter J,Clifford P,Fearnhead P.Improved Particle Filter for Nonlinear Problems[J].IEE proc.Radar,Sonar,Naving.,1999,2(1).
  • 7Doucet A,Gordon N,Krishnamurthy V.Particle Filters for State Estimation of Jump Markov Linear Systems[J].IEEE Trans.on Signal Processing,2001,49(3):613-624.
  • 8Gordon N J,Salmond D J and Smith A F M.Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J].IEE Pro-ceedings F.1993.140(2):107-113.
  • 9P Gmytrasiewicz and P Doshi.A framework for sequential optimality in multiagent setting.Technical Report UIC-AIL-TR05,University of Illinois at Chicago.Mar 2004.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部