期刊文献+

量子化场中运动二能级原子的纠缠动力学(英文)

Entanglement Dynamics of a Moving Two-level Atom in a Quantized Field
下载PDF
导出
摘要 研究了处于单模量子化场中的运动二能级原子的纠缠动力学,讨论了子系统的熵变和原子-场耦合系统的共生纠缠.结果表明:原子初态处于基态时,熵变呈反关联演化,随着原子处在激发态几率的增加这种行为逐渐被正关联行为所替代.除此之外,还发现:共生纠缠的振幅随着原子处在激发态几率的增加而增加.另外,熵变和共生纠缠的振幅随着原子的质心运动的加强而下降. The entanglement dynamics of a two-level atom with center-of-mass motion in a single-mode quantized field is investigated. The behavior of the entropy changes of the subsystems, as well as the concurrence of the coupled atom-field system is explored. These results show that when the atom is initially prepared in ground state anti-correlation behavior occurs, but a positively correlated behavior appears gradually as the increasing of the probability of the atom initially in excited state. Also, the amplitude of the concurrence increases with the increasing of the probability of the atom initially in excited state. In addition, with increasing of the atomic center-of-mass motion, both the amplitudes of the partial entropy changes and the concurrence are reduced.
出处 《新疆大学学报(自然科学版)》 CAS 2010年第3期253-257,275,共6页 Journal of Xinjiang University(Natural Science Edition)
基金 Supported by the NNSF of P.R.C(10547010) Youth Fund of XJU(070298)
关键词 纠缠 质心运动 熵变 共生纠缠 Entanglement center-of-mass motion entropy change concurrence
  • 相关文献

参考文献14

  • 1Abe S, Rajagopal A K. Towards nonadditive quantum information theory[J]. Chaos, Solitions & Fractals, 2002, 13:431-435.
  • 2Ekert A K. Quantum cryptography based on Bell's theorem[J]. Phys Rev Lett, 1991, 67:661-663.
  • 3Bennett C H, Brassard G, Crepean C, et al. Teleporting an Unknown Quantum State via Dual classical and Einstein-Podolsky-Rosen Channels[J]. Phys Rev Lett, 1993, 70:1895-1899.
  • 4Benenti G, Casati G, Strini G. Principles of Quantum Computation and Information[M]. Singapore: World Scientific, 2004, 1-43.
  • 5Phoenix S J D, Knight P L. Establishment of an entangled atom-field state in the Jaynes-Cummings model[J]. Phys Rev A, 1991, 44:6023-6029.
  • 6Jaynes E T, Cummings F W. Comparison of quantum and semiclassical radiation theory with application to the beam maser[J]. Proc IEEE, 1963, 51:89-109.
  • 7ZHOU Ling GAO Wen-Bin YANG Guo-Hui SONG He-Shan.Effects of Different Time-Dependent Couplings on Two-Atom Entanglement[J].Communications in Theoretical Physics,2007,47(5):909-912. 被引量:1
  • 8Farias O J, Latune C L, Walborn S P, et al. Determining the Dynamics of Entanglement[J]. Science, 2009, 324:1414-1417.
  • 9Wootters W K. Entanglement of Formation of an Arbitrary State of Two Qubits[J]. Phys Rev Lett, 1998, 80:2245-2248.
  • 10Romanelli A. Generalized Jaynes-Cummings model as a quantum search algorithm[J]. Phys Rev A, 2009, 80:014302.1- 014302-4.

二级参考文献15

  • 1M.B.Planio,S.F.Huelga,A.Beige,and P.L.Knight,Phys.Rev.A 59 (1999) 2468.
  • 2X.X.Yi,C.S.Yu,L.Zhou,and H.S.Song,Phys.Rev.A 68 (2003) 052304.
  • 3S.B.Zheng and G.C.Guo,Phys.Rev.Lett.85 (2000)2392.
  • 4S.Bose,I.F.Guridi,P.L.Knight,and V.Vedral,Phys.Rev.Lett.87 (2001) 050401.
  • 5M.S.Kim,Jinhyoung Lee,D.Ahn,and P.L.Knight,Phys.Rev.A 65 (2002) 040101.
  • 6L.Zhou,H.S.Song,and C.Li,J.Opt.B:Quantum Semiclass.Opt.4 (2002) 425.
  • 7J.Eschner,et al.,Nature (London) 414 (2001) 49.
  • 8L.M.Duan,A.Kuzmich,and H.J.Kimble,Phys.Rev.A 67 (2003) 032305.
  • 9L.Zhou,X.X.Yi,H.S.Song,and Y.Q.Guo,J.Opt.B:Quantum Semiclass.Opt.6 (2004) 378.
  • 10A.O.Castro,N.F.Johnson,and L.Quiroga,Phys.Rev.A 70 (2004) 020301(R).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部