摘要
研究了一类具有潜伏期和染病年龄的SEIR传染病模型,利用特征线法、积分方程理论和Banach不动点定理证明了该模型局部解的存在唯一性,通过先验估计证明了整体解的存在唯一性,并利用Gronwall不等式证明了解对初值的连续依赖性.最后,讨论了解的正则性.
The paper researches a class of SEIR epidemic model with infectious age and latent period. The existence uniqueness of local solution is proved by using characteristic method, the theories of integrate equation and Banach fixed point theorem. Then the existence uniqueness of global solution and continuous dependence of solutions for initial value is obtained by prior estimation and Gronwall inequality. In the end, the regularity of solution is discussed.
出处
《新疆大学学报(自然科学版)》
CAS
2010年第3期288-297,共10页
Journal of Xinjiang University(Natural Science Edition)
基金
新疆高校科研重点项目(XJEDU2007I03)
创新团体项目(XJEDU2007G01)
关键词
染病年龄
不动点定理
整体解
正则性
Infectious age
Fixed point theorem
Global solution
Regularity