期刊文献+

具有反馈控制和时滞的离散时间的Lotka-Volterra型食物链模型的持久性(英文) 被引量:1

Permanence for a Discrete Time Lotka-Volterra Type Food-chain Model with Feedback Controls and Delays
下载PDF
导出
摘要 本文研究了具有反馈控制和时滞的离散时间的Lotka-Volterra型食物链模型.建立了该模型持久的充分条件. The paper discusses a discrete time Lotka-Volterra type food-chain model with feedback control and delay. Sufficient conditions are established for the permanence of the obtained results.
作者 张玲 滕志东
出处 《新疆大学学报(自然科学版)》 CAS 2010年第3期298-304,352,共8页 Journal of Xinjiang University(Natural Science Edition)
基金 Supported by The National Natural Science Foundation of P.R. China (60764003) The Major Project of The Ministry of Education of P.R. China (207130) The Scientific Research Programmes of Colleges in Xinjiang (XJEDU2007G01,XJEDU2006I05)
关键词 持久性 时滞 离散的Lotka-Volterra系统 食物链 反馈控制 Permanence Delay Discrete Lotka-Volterra system Food-chain Feedback control
  • 相关文献

参考文献20

  • 1Hassell M P, Comins H N. Discrete time models for two-species competition[J]. Theor Popul Biol, 1976, 99:202-221.
  • 2Jiang H, Rogers T D. The discrete dynamics of symmetric competition in the plane[J]. J Math Biol, 1987, 25:573-96.
  • 3Ln Z, Wang W. Permanence and global attractivity for Lotlo-Volterra difference systems[J]. J Math Biol, 1999, 39:269-282.
  • 4Rogers T D. Chaos in systems in population biology[J]. Prog Theor Biol, Acad Press, New York, 1981, 6:91-146.
  • 5Saito Y, Ma W, Hara T. A necessary and sufficient condition for permanence of a Lotka-Volterra discrete system with delays[J]. J Math Anal Appl, 2001, 256:162-174.
  • 6Chen Y, Zhou Z. Stable periodic solution of a discrete periodic Lotka-Volterra competition system[J]. J Math Anal Appl, 2003, 277:358-366.
  • 7Li Y, Lu L. Positive periodic solutions of discrete n-species food-chain systems[J]. Appl Math Comput, 2005, 167:324-344.
  • 8Li Y, Zhu L. Existence of periodic solutions of discrete Lotka-Volterra systems with delays[J]. Bull Inst Math Acad Sinica, 2005, 33:369-380.
  • 9Yang X. Uniform persistence and periodic solutions for a discrete predator-rey system with delays[J]. J Math Anal Appl, 2006, 316:161-177.
  • 10Chen X, Chen F. Periodicity and stability of a discrete time periodic n-species Lotka-olterra competition system with feedback controls and deviating arguments[J]. Soochow J Math, In press, 2009.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部