期刊文献+

突发污染源散发特性辨识与仿真研究(英文)

Simulation Study on Contaminant Source Identification
下载PDF
导出
摘要 在载人航天器、潜艇、飞机等密闭微环境中,如果发现有污染源存在,确定污染源的位置及其散发特性具有重要意义。笔者提出一种新型的浓度离散随机模型,在采用敏感性分析方法实现污染源定位后,利用隐式与显式卡尔曼滤波相结合的方法实现污染源散发特性的动态辨识与预测,同时完成空气污染物浓度预测。笔者采用蒙特卡罗仿真实验方法对一密闭空间进行了动态仿真研究,仿真结果表明提出的方法可以实现污染源散发特性的快速准确辨识,具有重要的应用价值。 In case of contaminants appear in enclosed spaces such as spacecraft,submarine,aircraft and so on,it is useful to find the contaminant source. A novel algorithm was proposed to identify contaminant source strength based on finite sensors. After having identified the source location by using the Sensitivity Analysis Algorithm (SAA),this method built a new discrete concentration stochastic model,and combined implicit and explicit Kalman filter. Monte Carlo simulation was used in our experiment. The simulation results show that the new method could track and predict the source strength dynamically; meanwhile,it also could predict the distribution of contaminant concentration.
出处 《系统仿真学报》 CAS CSCD 北大核心 2010年第9期2211-2213,2222,共4页 Journal of System Simulation
基金 National Science Foundation of China (50808007)
关键词 污染源辨识 卡尔曼滤波 浓度预测 离散随机模型 蒙特卡罗仿真 source identification Kalman filter concentration prediction discretized concentration stochastic model Monte Carlo simulation
  • 相关文献

参考文献6

  • 1Chang H Son. Analysis of carbon dioxide concentration in the shuttle orbiter middeck for the launch on need mission [C]// 35th International Conference on Environmental Systems, 2005-01-2799. Rome, Italy: Society of Automotive Engineers, 2005:112-117.
  • 2Xiang Liu, Zhiqiang Zhai. Probability-based inverse modeling algorithm for indoor pollutant source tracking [C]// Proceedings: Building Simulation, 2007. Beijing, China: Tsinghua University, 2007:810-817.
  • 3Zhang T, Chen Q. Identification of contaminant sources in enclosed environments by inverse CFD modeling [J]. Indoor Air (S0905-6947), 2007, 17(3): 167-177.
  • 4Pantankar S V. A calculation procedure for two-dimensional elliptic situation [J]. Numerical Heat Transfer (S1040-7782), 1981, 4(4): 405-425.
  • 5Kalman R E, Bucy R S. New results in linear filtering and prediction theory [J]. Journal of Basic Engineering (S0021-9223), 1961, 83(D): 95-100.
  • 6Mikhail Skliar, W Fred Ramirez. Implicit Kalman filtering [J]. International Journal of Control (S 1598-644), 1997, 66(3): 393-412.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部