期刊文献+

加权模糊关联挖掘算法 被引量:5

Algorithm of weight fuzzy association rules
下载PDF
导出
摘要 针对数量型关联规则挖掘中划分边界过硬问题,以及加权关联规则中为确保向下封闭性成立而引起的规则丢失问题,提出一种新的加权模糊关联挖掘模型及其挖掘算法NFWARM。为了避免区间划分引起的边界过硬问题,该模型引入模糊集软化属性的划分边界;同时,使用属性权重刻画元素对规则的贡献,在保证频繁项集向下封闭性的情况下,不会引起规则丢失。实验结果表明,该算法适用于包含布尔型和数值型数据的大型数据库的规则挖掘,并且得到的频繁项目集数目和规则数目有显著增加。 To solve the problem of strong division in mining quantitative association rules and rules loss caused by ensuring the validation of downward closure property in weighted association rules,a new weighted fuzzy association rules mining model and its mining algorithm NFWARM are proposed.In the model,boundaries of division are softened using fuzzy set,and the problem of strong division is avoided;in the meantime,elements’ contribution to rules is measured by attribute weight,and the problem of rules loss is avoided with the validation of downward closure property ensured.The experimental results show that the proposed algorithm applies to the rule mining of large database including boolean and numerical data,and the number of the obtained frequent item sets and rules have significantly increased.
出处 《计算机工程与设计》 CSCD 北大核心 2010年第16期3654-3657,共4页 Computer Engineering and Design
基金 国家自然科学基金项目(60841003) 国家火炬计划基金项目(2004EB33006)
关键词 数据挖掘 加权关联规则 模糊关联规则 向下封闭性 隶属度函数 data mining weighted association rules fuzzy association rules downward closure property membership function
  • 相关文献

参考文献10

二级参考文献42

  • 1宫雨,武森,尹阿东,高学东.加权关联规则的改进算法[J].计算机工程与应用,2004,40(22):177-179. 被引量:9
  • 2周晓云,孙志挥,倪巍伟.一种基于加权的高效关联规则挖掘算法的设计与实现[J].计算机工程与应用,2004,40(20):17-19. 被引量:10
  • 3尹群,王丽珍,田启明.一种基于概率的加权关联规则挖掘算法[J].计算机应用,2005,25(4):805-807. 被引量:18
  • 4高俊,施伯乐.快速关联规则挖掘算法研究[J].计算机科学,2005,32(3):200-201. 被引量:10
  • 5R Agrawal,R Srikant.Fast algorithms for mining association[C].In: Proc of the 20th Int'l Conf on Very Large Database,1994:487-499.
  • 6C H Cai,W C Fu Ada,C H Cheng et al.Mining association rules with weighted items[C].In:Proc of the Int'l Database Engineering and Applications Symposium, 1998:68-77.
  • 7R Srikant,Q Vu,R Agrawal.Mining association rules with item constraints[C].In:Proc of the Third Int'l Conf in knowledge Discovery in Databases and Data Mining,1997:67-73.
  • 8Feng Tao, Fionn Murtagh, Mohsen Farid.Weighted Association Rule Mining using Weighted Support and Significance Framework[C].In: Proc of the 9th ACM SIGKDD international conference on Knowledge discovery and data mining,2003:661-666.
  • 9胡昌振.网络入侵检测原理与技术[M].北京理工大学出版社,1996
  • 10Han Jiawei, Kamber M. Data Mining Concepts and Techniques[M].范明,盂小锋,等译.机械工业出版社,2000

共引文献25

同被引文献59

引证文献5

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部