期刊文献+

PID神经网络改进研究 被引量:9

The Study of Momentum PID Neural Network
下载PDF
导出
摘要 PID神经网络(PIDNN)是将神经网络和PID控制规律融为一体的新型前向神经元网络。对于多数系统,PIDNN可以利用已有PID控制规律的先验知识确定网络权重初值,使系统得到稳定快速的控制。当权重初值选择为随机数时,收敛速度变慢,同时可能陷入局部最小。针对这一类系统,提出附加动量项的改进算法,克服权重初值取随机数带来的问题。系统仿真结果证明改进后的PIDNN系统性能得到了明显改善。 PID neural network is a new type of feed-forward neural network, in which neural networks integrate with PID algorithm. For most systems, the apriority knowledge of PID algorithm can be used to choose the initial weights, so that system has been steady and rapid control. Without the apriority knowledge, initial weights usually use the random number, and the convergence slows down, while likely to fall into local minimum. The paper proposes an improved algorithm formula which has momentum coefficients to overcome the problems caused by the random initial weights. The distinct improvement of the PIDNN control system is proved by simulation results.
出处 《机电工程技术》 2010年第8期39-41,115,共4页 Mechanical & Electrical Engineering Technology
关键词 PID神经网络 权重初值 动量项 稳定性 PIDNN initial weight momentum coefficient stability
  • 相关文献

参考文献3

二级参考文献17

  • 1孙旭东,王卫红.改进单神经元PID控制器在伺服系统中的应用[J].系统仿真学报,2006,18(z2):880-881. 被引量:9
  • 2侯勇严,郭文强.单神经元自适应PID控制器设计方法研究[J].微计算机信息,2005,21(08S):8-9. 被引量:19
  • 3胡志军,王建国,王鸿斌.基于优化BP神经网络的PID控制研究与仿真[J].微电子学与计算机,2006,23(12):138-140. 被引量:16
  • 4金以慧.过程控制[M].北京:清华大学出版社,2002..
  • 5王勇骥,涂健.神经元网络控制[M].北京:机械工业出版社,1998:303-305.
  • 6孙增析,等.智能控制理论与技术[M].北京:清华大学出版社,2002.
  • 7Akhyar S, Omatu S. Neuromorphic self-tuning PID controller [ C ]. Neural Networks ,International Conference on 28 March - 1 April 2002.
  • 8Yu Yongquan, Huang Ying. A PID neural network controller [ C ]. Neural Networks, Proceedings of the International Joint Conference 2003,3 ( 7 ) :20 - 24.
  • 9徐鑫福,冯亚昌.飞机飞行控制系统[M].北京:北京航空航天大学出版社,1989.
  • 10K J Astrom ,T Hagglund. Automatic tuning of PID Controllers [ C ]. Research Triangle Park. Instrument Society of America.2001.

共引文献5

同被引文献62

引证文献9

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部