期刊文献+

监督型局部保持的典型相关分析

Supervised Locality Preserving Canonical Correlation Analysis
下载PDF
导出
摘要 利用数据集的局部结构信息和判别结构信息,构建相似度矩阵和类信息矩阵,提出监督型局部保持的典型相关分析(Supervised Locality Preserving Canonical Correlation Analysis,SLPCCA),该方法不但突破了典型相关分析(Canonical Correla-tion Analysis,CCA)处理数据时的线性约束,提高了处理非线性问题的能力,而且克服了局部保持的典型相关分析(LocalityPreserving Canonical Correlation Analysis,LPCCA)忽视类信息的问题,提取的特征更有利于分类.在多特征手写体数据库(MFD)和美国国家邮政局手写字库(USPS)上的实验结果验证了该算法的有效性. In this paper,a novel supervised locality preserving canonical correlation analysis(SLPCCA)is developed,which uses discriminative structural information to construct the class-information matrix,as well as combine the correlation of the neighboring samples to construct the similarity matrix.As a result,SLPCCA can not only improve the ability of CCA to solve nonlinear problems by infusing the local structural information and breaking the linear restriction,but also overcome the shortcoming of LPCCA which neglects the class information.We obtain features which is more favor of classification compared with LPCCA.The experimental results on Multiple Feature Dataset and USPS Dataset have demonstrated the superiority of our proposed SLPCCA compared with CCA and LPCCA.
出处 《小型微型计算机系统》 CSCD 北大核心 2010年第8期1572-1577,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60773061)资助 江苏省自然科学基金项目(BK2008381)资助 南京航空航天大学基本科研业务费专项科研项目(NS2010201)资助
关键词 典型相关分析 局部保持的典型相关分析 局部结构信息 判别结构信息 流形学习 canonical correlation analysis locality preserving canonical correlation analysis local structural information discriminative structural information manifold learning
  • 相关文献

参考文献29

  • 1Hotelling H. Relations between two sets of variates [ J]. Biometrika. 1936. 28: 321-377.
  • 2Hardoon D R, Szedmak S, Tayloy J S. Canonical correlation analysis: an overview with application to learning method [J]. Neural Computation, 2004, 16: 2639-2664.
  • 3Johansson B. On classification:simultaneously reducing dimensionality and finding automatic representation using canonical correlation[ R]. Technical Report, LiTH-ISY-R-2375, Linkping University, 2001(8).
  • 4Sun Ting-kai, Chen Song-can. Locality preserving CCA with application to data visualization and pose estimation [J]. Image and Vision Computing, 2007, 25(5): 531-543.
  • 5Shawe-Taylor J, Cristianini N. Kernel methods for pattern anlysis [M]. Cambridge : Cambridge University Press, 2004,25-46.
  • 6Akaho S. A kernel method for canonical correlation analysis[ C]. International Meeting of Psychometric Society. Osaka, Japan 2001.
  • 7Melzer T,Reiter M, Bischof H. Appearance models based on kernel canonical correlation analysis[ J]. Pattern Recognition, 2003, 36(9) :1961-1971.
  • 8Lai P L, Fyfe C. Kernel and nonlinear canonical correlation analysis[J]. International Journal of Neural Systems,2000, 10(5):365- 377.
  • 9Horikawa Y. Use of autocorrclation kernels in kernel canonical correlation analysis for texture classification [ J ]. ICONIP, 2004. LNCS 3316. Springer-Verlag, Berlin, Hcidclbeg, 2004, 1235-1240.
  • 10Tenenbaum J B, Langford J C, Silva V D. A global geometric framework for nonlinear dimensionality reduction [ J ]. Science, 2000(290) :2319-2323.

二级参考文献18

  • 1张尧庭.多元统计分析引论[M].北京:科学出版社,1999.35-46.
  • 2Hotelling H.. Relations between two sets of variates. Biometrika, 1936, 28: 321~377.
  • 3Phillips P.J., Moon H.J., Rizvi S.A., Rauss P.J.. The FERET evaluation methodology for face recognition algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22 (10): 1090~1104.
  • 4Bolme D.S., Beveridge J.R., Teixeira M., Draper B.A.. The CSU face identification evaluation system: Its purpose, features, and structure. In: Proceedings of the 3rd International Conference on Computer Vision Systems(ICVS), Graz, Austria, 2003, 304~313.
  • 5Turk M., Pentland A.. Face recognition using Eigenfaces. In: Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, USA, 1991, 586~591.
  • 6Belhumeur P.N. et al.. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711~720.
  • 7Jin Z., Yang J.Y., Tang Z.M., Hu Z.S.. A theorem on the uncorrelated optimal discriminant vectors. Pattern Recognition, 2001, 34(7): 2041~2047.
  • 8Huang Y.S., Suen C.Y.. A method of combining multiple experts for the recognition of unconstrained handwritten numerals. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 7(1): 90~94.
  • 9Constantinidis A.S., Fairhurst M.C., Rahman A.F.R.. A new multi-expert decision combination algorithm and its application to the detection of circumscribed masses in digital mammograms. Pattern Recognition, 2001, 34(8): 1528~1537.
  • 10Jing X.Y., Zhang D., Yang Z.Y.. Face recognition based on a group decision-making combination approach. Pattern Recognition, 2003, 36(7): 1675~1678.

共引文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部