期刊文献+

Chameleon算法的改进 被引量:10

Enhanced Chameleon Clustering Algorithm
下载PDF
导出
摘要 结合Chameleon算法可以发现高质量的任意形状、大小和密度的自然簇及一趟聚类算法快速高效的特点,研究可以处理混合属性的高效聚类算法.首先简单改进Chameleon算法,使之可以处理含分类属性的数据;进而提出一种两阶段聚类算法.第一阶段使用一趟聚类算法对数据集进行初始划分,第二阶段利用改进的Chameleon算法归并初始划分而得到最终聚类.在真实数据集和人造数据集上的实验结果表明,提出的两阶段聚类算法是有效可行的. In view of the fact that Chameleon clustering algorithm can identify the data with arbitrary shape,size and density,and one-pass clustering algorithm has the efficient feature,an efficient clustering algorithm is presented,the clustering algorithm can process the data with categorical attributes.First,Chameleon is improved to process the data with categorical attributes.Second,by combining one-pass clustering algorithm with improved Chameleon clustering algorithm,a two-stage enhanced Chameleon clustering algorithm is presented.In the first stage,one-pass clustering algorithm is used for grouping the data(we call it original partition).In the second stage,we merge that partition with improved Chameleon clustering algorithm so that the final clusters are obtained.The experimental results on real datasets and synthetic datasets show that the presented clustering algorithm is effective and practicable.
出处 《小型微型计算机系统》 CSCD 北大核心 2010年第8期1643-1646,共4页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60673191)资助 广东省自然科学基金项目(9151026005000002)资助 广东省高等学校自然科学研究重点项目(06Z012)资助
关键词 一趟聚类算法 基于图的聚类算法 任意形状簇 one-pass clustering algorithm graph-based clustering algorithm arbitrary shape cluster
  • 相关文献

参考文献4

二级参考文献32

  • 1George K,Han Eui - Hong, Vipin K. Chameleon: Hierarchical clustering using dynamic modeling[J]. Computer, 1999, 32 (8) :68 - 75.
  • 2M Perkowitz,O Etzioni. Towards Adaptive Web Sites: Conceptual Framework and Case Study. A~ficial Intelligence,2000: 245~275.
  • 3G Karypis, E H Han, and V Kumar. CHAMELEON: A Hierarchical clustering algorithm Using Dynamic Modeling.COMPUTER, 1999,32: 68~75.
  • 4G Karypis and V Kumar. Multilevel K-way Partitioning Schema for Irregular Graphs. Journal of Parallel and Distributed Computing, 1998,48(1): 96-129.
  • 5MehmedKantardzic 闪四清译.数据挖掘:概念、模型、方法和算法[M].北京:清华大学出版社,2003..
  • 6王晔 李德毅.自适应WEB站点的访问数据聚类方法[A]..中国人工智能进展[C].北京:清华大学出版社,2001.402—406.
  • 7HanJiawei MichelineKamber.数据挖掘概念与技术[M].北京:机械工业出版社,2001.152-160.
  • 8T H Cormen,C E Leiserson,R L Rivest. Introduction to Algothm[M]. The MIT Press,1989.
  • 9J Han,M Kamber.Data Mining: Concepts and Techniques[M].Morgan Kaufmann ,2000.
  • 10R Ng,J Han.Efficient and effective clustering method for spatial data mining[C].In:Proe 1994 Int Conf Very Large Data Bases,Santiago, Chile, 1994-09 : 144-155.

共引文献39

同被引文献75

引证文献10

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部