期刊文献+

半监督层次纠错输出编码算法 被引量:3

Semi-supervised Based Hierarchical ECOC Algorithm
下载PDF
导出
摘要 纠错输出编码是一种处理多类分类问题的有效方法,但它只能用于有监督的数据,而对大量未标签样本却无法利用.提出一种新颖的基于半监督技术的层次编码算法,对传统的纠错输出编码算法(ECOC)进行改造,拓展了编码的概念.在编码阶段,根据簇特征进行同类组合后再进行层次编码,从而在充分利用了无标签样本的同时,根据数据类分布的特点进行编码以提高算法精度.最后在化工产品有毒性预测数据集上的实验结果表明了本方法的可行性和有效性. Error correcting output coding is an effective method used to deal with multi-class olassification problems.However,it can not be used for a large amount unlabeled training examples except labeled ones.A novel hierarchical ECOC algorithm based on semi-supervised technique is proposed in this paper which extends the original idea of the traditional ECOC.To improve the accuracy of multi-classifier classification,on coding phase,a hierarchical coding is built for classes after combining all clusters with the same class label.The experimental results on some toxicity datasets of chemical compounds from real-world application show its effectiveness of the proposed method.
出处 《小型微型计算机系统》 CSCD 北大核心 2010年第8期1659-1664,共6页 Journal of Chinese Computer Systems
基金 福建省自然科学基金项目(2008J04004 2007J0016和2009J01273)资助 教育部回国留学人员基金项目(教外司留[2008]890号)资助
关键词 纠错输出编码 半监督学习 层次编码 多类分类 error correcting output codes semi-supervised learning hierarchical coding multi-class classification
  • 相关文献

参考文献26

  • 1Roth V. Probabilistic discriminative kernel classifiers for multi-class problems[ M]. Pattern Recognition-DAGM'01, Springer, LNCS 2191,2001,246-253.
  • 2Frank E, Krarner S. Ensembles of nested dichotomies for multiclass problems[C]. In Proceedings of 21st International Conference on Machine Learning, 2004,305-312.
  • 3Allwein E L,Shapire R,EandSinger Y. Reducing multiclass to binary: a unifying approach for margin classfiers[J]. Machine Learning Research,2002,47 ( 1 ) :113-141.
  • 4Thomas G. Diettefich G. Bakiri. solving multiclass learning problems via Error-Correcting output codes [ J ]. Artificial Intelligence Research, 1995 ( 2 ) :263-286.
  • 5Passerini A, Pontil M, Frasconi P. New results on error correcting codes of kernel machines [ J ]. IEEE Trans. Neural Networks, 2004,15 ( 1 ) :45-54.
  • 6Crammer K, Singer Y. On the learnability and design of output codes for multicalss problems[ J ]. Machine Learning, 2002,47 (2- 3 ) :201-233.
  • 7Pujol O, Radeva P. Discriminant ECOC: a heuristic method for application dependent design of error correcting output codes [ J ]. IEEE Transactions on Pattern Analyses and Machine Intellgence, 2006,28(6) :1007-1012.
  • 8Esealera S,Pujol O,Radeva P. Eeoc-one: a novel coding and decoding strategyE C ]. In: International Conference on Pattern Recognition (ICPR), HongKong 3, 2006,578-581.
  • 9Blum A, Mitchell T. Combining labeled and unlabeled data with co-training[C]. In:Proceedings of the 11th Annual Conference on Computational Learning Theory ( COLT-98 ), 1998,92-100.
  • 10Ghani R. Combining labeled and unlabeled data for multiclass text categorization[C]. International Conference on Machine Learning ( ICML), 2002,187-194.

同被引文献69

  • 1李建武,魏海周,宋玉龙.ECOC多分类器实现的最小封闭球模型[J].计算机研究与发展,2011,48(S3):22-30. 被引量:1
  • 2蒋艳凰,赵强利,杨学军.一种搜索编码法及其在监督分类中的应用[J].软件学报,2005,16(6):1081-1089. 被引量:13
  • 3陶晓燕,姬红兵.一种基于SOM解码的多类支持向量机[J].系统工程与电子技术,2006,28(9):1447-1450. 被引量:3
  • 4T G Dietterich, G Bakiri. Solving. Multi-class learning problemsvia error-correcting output codes[J] .Journal of Artificial Intel- ligence Research, 1995,34 ( 2 ) : 263 - 286.
  • 5T G Dietterich,G Bakiri, Error-correcting output codes:A gen- eral method for improving multiclass inductive learning pro- grants[A]. Proceedings of the Ninth National Conference on Artificial Intelligence[C]. Menlo Park, San Francisco: AAAI, 1991.572 - 577.
  • 6T G Dietterich, E Kong. Error correcting output codes corrects bias and variance[A]. Proceedings of the 21th Intemafional Conference on Machine Learning[C]. San Francisco: AAAI, 1995.313 - 321.
  • 7F MasuUi G Valentini. Effectiveness of error correcting output coding methods in ensemble and monolithic learning machines [J]. Pattern Anal Applic, 2003,65(6) :285 - 300.
  • 8Crammer K, Singer Y.On the leamability and design of output codes for mulficlass problems [A]. Proceedings of the Thir- teenth Annual Conference on Computational Learning Theory [C]. Boston: Kluwer Academic Publishers, 2000. 896 - 909.
  • 9T Windeatt,R Ghaderi. Binary labelling and decision level fu- sion[J] .Information Fusion, 2001,2( 1 ) : 103 - 112.
  • 10E Tapia, P Bulacio, L Angelone. Recursive classification [J]. Pattern Recognition letters, 2010,31 (3) : 210 - 215.

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部