期刊文献+

毛细相变流体回路冷凝界面的稳定性

Stability of the Condensing Interface in a Capillary Loop with Phase Change
下载PDF
导出
摘要 依据毛细管内冷凝液柱的卢卡斯-沃什伯恩(Lucas-Washburn)方程,获得了相变毛细管中流体上升高度与毛细管半径以及热流密度的关系式,并将此关系式推广到毛细相变流体回路中,利用小扰动理论通过对界面高度的变化来分析研究冷凝界面的稳定性。文章通过研究三种不同运行状态下的界面动力学行为发现,在实际运行过程中,蒸汽管路的压力波动将使冷凝界面形成具有一定振幅的波动。 A mathematical model based on the Lucas-Washburn equation was developed to address the relations of the capillary height, capillary radius and the heat flux in a capillary column and the equation was extended to a capillary loop for investigating the stability of the condensing interface with phase change by some simplifications. The stability of the condensing interface was studied by introducing a small disturbance into capillary height. The dynamics performances of the condensing interface under three different operating conditions were discussed. The results show that there is avibration with a certain amplitude on the condensing interface due to the periodic oscillation of the pressure in the system.
出处 《中国空间科学技术》 EI CSCD 北大核心 2010年第4期64-70,共7页 Chinese Space Science and Technology
基金 国家自然科学基金(50876035 50906026)
关键词 毛细回路 冷凝界面 小扰动理论稳定性 热控制 Capillary loop Condensing interface Small perturbance method Stability Thermal control
  • 相关文献

参考文献4

  • 1BAZZO E, RIEHL R R. Operation characteristics of a small-scale capillary pumped loop [J]. Applied Thermal Engineering, 2003, 23 (6):687--705.
  • 2刘伟,刘志春,明廷臻,涂正凯.相变流体回路中毛细芯内液体气化界面的稳定性分析[J].自然科学进展,2009,19(7):773-777. 被引量:2
  • 3CHEN Y M, GROLL M, et al. Steady-state and transient performance of a miniature loop heat pipe [J]. International Journal of Thermal Sciences, 2006, 45 (11): 1084--1090.
  • 4RAMON G, ORONB A. Capillary rise of a meniscus with phase change [J]. Journal of Colloid and Interface Science, 2008, 327: 145--151.

二级参考文献11

  • 1Bazzo E, Riehl RR. Operation characteristics of a small-scale capillary pumped loop. Applied Thermal Engineering, 2003, 23(6): 687--705.
  • 2Maydanik Yu F. Loop heat pipes. Applied Thermal Engineering, 2005, 25:635- 657.
  • 3Peterson GP. An Introduction to Heat Pipes: Modeling, Testing, and Applications. New York: Wiley, 1994.
  • 4Zhang JT, Wang BX. Effect of capillarity at liquid-vapor interface on phase change without surfactant. Int J Heat and Mass Transfer, 2002, 44(13): 2689--2694.
  • 5童均耕,吴孟余,王平阳.高等工程热力学.北京:科学出版社,2006.
  • 6Figus C, Bray YL, Prat M, et al. Heat and mass transfer with phase change in a porous structure partially heated: Continuum model and pore network simulation. Int J Heat and Mass Transfer, 1999, 42:2557--2569.
  • 7Wan ZM, Liu W, Nakayama A. Conjugate numerical investigate of small-scale flat plate capillary pumped looped evaporator, Proc of the 22^nd Int Conference of Refrigeration, Beijing, China, 2007.
  • 8Arpaci VS, Larsen PS. Convection Heat Transfer, New Jersey: Prentice-Hall, 1984.
  • 9Khrustalev D, Faghri A. Heat transfer in the inverted meniscus type evaporator at high heat fluxes. Int J Heat and Mass Transfer, 1995, 38(6):3091--3101.
  • 10Liu W, Mizukami K, Peng SW. Stability analysis for a bubble nucleus in surface cavity. Proe. of the 9th Int. Symposium on Transport Phenomena, Singapore, 1996.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部