期刊文献+

16Mn钢在空气和3.5% NaCl溶液中的疲劳行为 被引量:3

Fatigue Behaviour of 16Mn Steel in Air and 3.5% NaCl Solution
下载PDF
导出
摘要 采用哑铃状平板试样,分别研究了16Mn钢在空气中和3.5%NaCl溶液中的疲劳行为,获得了S-N曲线,并对疲劳试样的表面和断口形貌进行了观察。结果表明:3.5%NaCl溶液(与空气相比)使16Mn钢的疲劳强度有较大程度的降低,在空气中16Mn钢的疲劳极限为200 MPa,而在3.5%NaCl溶液中该钢则不存在疲劳极限;空气中的疲劳试样只有一个萌生于试样表面基体的裂纹源,而3.5%NaCl溶液中该钢的疲劳试样一般有多个裂纹源,除了极少数萌生于试样表面基体处,其余均萌生于表面的点蚀坑;空气中疲劳试样裂纹扩展区的断口形貌以疲劳辉纹为主,而3.5%NaCl溶液中的则以沿晶开裂等脆性特征为主。此外还对空气中16Mn钢的疲劳极限进行了预测,预测值与试验值基本吻合。 The fatigue behaviour of 16Mn steel in air and 3. 5% NaCl solution were studied by dumble-shaped plate type specimens. The S-N curves show that the fatigue strength of 16Mn steel in 3. 5% NaCl solution was much lower than that in air. The fatigue limit of it in air was 200 MPa, but there was no fatigue limit in 3.5% NaCl solution. Surface and fractography observation results show that the fatigue cracks in air were initiated from the matrix of surface, while most of fatigue cracks in 3. 5% NaCl solution were initiated from surface pits, except for some from the matrix of surface. The typical feature of the fatigue crack propagation region in air was fatigue striations, while that in 3. 5% NaCl solution was intergranular crack characteristic. It was found that the fatigue limit of 16Mn steel in air could be predicted by empirical equation, and the predicted fatigue limit was agreeable to the experimental fatigue limit.
出处 《理化检验(物理分册)》 CAS 2010年第8期475-480,共6页 Physical Testing and Chemical Analysis(Part A:Physical Testing)
基金 国家自然科学基金资助项目(50432020) 浙江省自然科学基金资助项目(Y107428)
关键词 疲劳行为 16MN钢 裂纹萌生 点蚀坑 裂纹扩展 疲劳极限预测 fatigue behaviour 16Mn steel crack initiation pit crack propagation fatigue limit prediction
  • 相关文献

参考文献10

  • 1冯佃臣,宋义全,李涛,李晓刚.16Mn钢在内蒙古五地区土壤腐蚀的研究[J].内蒙古科技大学学报,2009,28(1):50-53. 被引量:4
  • 2周琦,贾建刚,南雪丽,臧树俊,赵红顺,程新兰.CO2环境介质下16Mn钢的高温高压腐蚀性能[J].兰州理工大学学报,2008,34(1):14-18. 被引量:7
  • 3李明齐,蔡铎昌,何晓英.H_2S薄层液膜下16Mn钢腐蚀的电化学研究[J].材料保护,2006,39(1):1-5. 被引量:4
  • 4王国珍,王俊刚,陈剑虹.试样尺寸对钢的细观解理断裂应力的影响[J].机械强度,2003,25(5):552-555. 被引量:7
  • 5UNIGOVSKI Y, ELIEZER A, ABRAMOV E, et al. Corrosion fatigue of extruded magnesium alloys[J]. Materials Science and Engineering A, 2003, 360: 132- 139.
  • 6ZHANG M, YANG P S,TAN Y X. Micromechanisms of fatigue crack nucleation and short crack growth in a low carbon steel under low cycle impact fatigue loading [J]. International Journal of Fatigue, 1999, 21: 823- 830.
  • 7RIOS E R,MOHAMED H J,MILLER K J. A micro- mechanics analysis for short fatigue crack growth[J]. Fatigue Fracture Engineering Material Structre, 1985, 8 : 49-63.
  • 8ATKINSON H V, SHI G. Characterization of inclusions in clean steels, a review including the statistics of extremes methods[J]. Progress in Materials Science, 2003,48 .. 457-520.
  • 9YRIL N, FATEMI A. Experimental evaluation and modeling of sulfur content and anisotropy of sulfide inclusions on fatigue behavior of steels[J]. International Joumal of Fatigue, 2009,31 :526-537.
  • 10CHEN G S, WAN K C, GAO M, et al. Transition from pitting to fatigue crack growth-modeling of corrosion fatigue crack nucleation in a 2024-T3 alumina alloy[J]. Materials Science and Engineering A, 1996,219: 126-132.

二级参考文献39

共引文献14

同被引文献60

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部