摘要
得到了随机指数系在加权Banach空间C_α中完备和极小的充要条件,其中C_α是实直线R上的复连续函数在权α的一致范数下组成的Banach空间.这些结果可以看作是Malliavin经典结果的概率推广.
Necessary and sufficient conditions are obtained for the completeness and minimality of some random exponential system in a weighted Banach space C_α,which consists of some complex functions continuous on the real line for the weightα,in the uniform norm. The results are viewed as a probabilistic generalization of Malliavin's classical results.
出处
《数学年刊(A辑)》
CSCD
北大核心
2010年第4期385-394,共10页
Chinese Annals of Mathematics
基金
国家自然科学基金(No.10671022)
教育部留学回国人员科研启动基金(No.[2008]890)和教育部博士点专项基金(No.20060027023)资助的项目.
关键词
随机指数系
完备性
极小性
Random exponential system
Completeness
Minimality