期刊文献+

简单光滑精确指数乘子罚函数 被引量:1

Simple Smooth Exact Exponential Multiplier Penalty Function
下载PDF
导出
摘要 解决有约束非线性规划问题的一个基本方法是将之简化为无约束问题,比如罚函数法.其中精确罚函数法是通过解决某个无约束问题来获得原有约束问题的一个解.就经典的罚函数定义而言,简单精确罚函数是非光滑的,从而难以处理.作者提出一个简单光滑精确指数乘子罚函数,验证在二阶充分条件下它存在相应的超线性收敛率,并得到关于它的强弱对偶结果. One of the fundamental methods for solving constrained nonlinear programming problems is to reduce it into unconstrained problems,such as penalty function methods. The exact penalty function method is to obtain a solution of the original problem by solving a single unconstrained programming problem.When the traditional definition of penalty functions is used,the simple exact penalty function is nonsmooth,thus it is difficult to deal with.In this paper,a simple smooth exact exponential multiplier penalty function is proposed.A superlinear convergence rate is obtained under the second order sufficient condition.Weak and strong duality results are also established.
出处 《数学年刊(A辑)》 CSCD 北大核心 2010年第4期475-486,共12页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10271073)资助的项目.
关键词 有约束非线性规划 精确罚函数 指数乘子罚函数 K-K-T条件 二阶充分条件 Constrained nonlinear programming Exact penalty function Exponential multiplier penalty function K-K-T condition Second order sufficient condition
  • 相关文献

参考文献8

  • 1Zangwill W. Nonlinear programming via penalty function [J]. Management Science, 1967, 13(5):344-358.
  • 2Burke J. Calmness and exact penalization [J]. SIAM J Control and Optimization, 1991, 29(2):493-497.
  • 3Burke J. An exact penalization viewpoint of constrained optimization [J]. SIAM J Control and Optimization, 1991, 29(4):968 -998.
  • 4Evans J P, Gould F J, Tolle J W. Exact penalty functions in nonlinear programming [J]. Mathematical Programming, 1973, 4(2):72- 97.
  • 5Fletcher R. Penalty functions in mathematical programming [M]//Bachen A, et al. (eds). The State of the Art. Berlin: Springer-Verlag, 1983:87-114.
  • 6Di Pillo G, Grippo L. Exact penalty methods [M]//Spedicato E (ed). Algorithm for Continous Optimization. Dordrecht: Kluwer Academic Publishers, 1994:209-253.
  • 7Bertsekas D P. Nonlinear programming [M]. 2nd ed. Belmout, Massachusetts: Athena Scientific, 1999.
  • 8Tseng P, Bertsekas D P. On the convergence of the exponential multiplier method for convex programming [J]. Mathematical Programming, 1993, 60(1):1- 19.

同被引文献6

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部