期刊文献+

电极间距对真空电弧电压及阳极熔池旋转速度影响的实验研究 被引量:16

Experimental Study on Effects of Electrode Gaps on the High-current Vacuum Arc Voltage and the Rotation Speed of Anode Melting Pool
下载PDF
导出
摘要 在可拆卸真空灭弧室中对纯铜杯状纵向磁场电极分别进行了间距10,16,20mm的大电流(有效值为10,20kA)燃弧实验,用高速摄影仪拍摄电极间的电弧形态及阳极表面熔池的旋转运动,并测量了电弧电压波形。以实验测量为基础,分析研究了真空电弧在不同间距下的电弧电压特性、阳极表面熔池旋转运动。实验结果表明,随着电极间距的增大,电弧逐渐向不稳定态发展并且电弧电压逐渐增大。阳极表面熔池半径及金属液体旋转速度随着电极间距的增大而增大。电极间距10mm的熔池旋转线速度大约为0.664m/s,熔池半径大约为14.5mm;而电极间距16mm的熔池旋转线速度为1.204m/s,熔池半径大约为15.6mm。 High-current (10kA rms, 20kA rms) vacuum arc experiments were conducted in a detachable vacuum chamber for copper cup axial magnetic field (AMF) contacts with the electrode gaps of 10, 16 and 20mm. The vacuum arc appearance and the rotation speed of melting pool were observed with the high-speed CCD video camera, and the arc voltage waveforrns were measured at the same time. Based on the experimental measurement, the high-current vacuum arc voltage and characteristics of melting pool rotation on AMF contacts with different electrode gaps were analyzed. Experimental results showed that the arc tends to be unstable and the arc voltage gradually increases with increasing of the electrode gap, so do the radius and the rotation speed of the anode surface melting pool. The rotation speed of the anode melting pool is about 0.664 m/s and the metal pool's radius is about 14.5mm with the electrode gap of 10mm. In contrast, the rotation speed of anode melting pool is about 1.204 m/s and the melting pool's radius is about 15.6mm with the electrode gap of 16mm.
出处 《中国电机工程学报》 EI CSCD 北大核心 2010年第25期135-140,共6页 Proceedings of the CSEE
基金 国家自然科学基金项目(50907045 50707022) 新世纪优秀人才支持计划项目(NCET-06-0830) 高等学校博士学科点专项科研基金资助项目(200806981052 2009020111015)~~
关键词 真空灭弧室 纵向磁场 电弧电压 熔池旋转 vacuum interrupter axial magnetic field arc voltage pool rotation of melting
  • 相关文献

参考文献25

  • 1王立军,贾申利,史宗谦,张玲,荣命哲.开距对不同状态下真空电弧特性影响的仿真分析[J].中国电机工程学报,2008,28(7):154-160. 被引量:32
  • 2Gundlach H C W, Interaction between a vacuum arc and an axial magnetic field[C]. VIIIth International Symposia on Discharge and Electrical Insulation in Vacuum, Albuquerque, 1978.
  • 3Keidar M, Schulman M B. Modeling the effects of an axial magnetic field on the vacuum arc[J]. IEEE Trans. on Plasma Sciences, 2001, 29(5): 684-689.
  • 4Schellekens H. 50 years of TMF contacts design considerations: discharges and electrical insulation in vacuum[C]. 23rd International Symposia on Discharge and Electrical Insulation in Vacuum, Bucharest, Romania, 2008.
  • 5尚文凯,王季梅.大电流真空电弧收缩现象的研究[J].中国电机工程学报,1989,9(2):34-41. 被引量:16
  • 6Schulman M B, Schellekens H. Visualization and characterization of high-current diffuse vacuum arcs on axial magnetic field contacts[J]. IEEE Trans. on Plasma Sciences, 2000, 28(2): 443-451.
  • 7Schellekens H, Schulman M B. Contact temperature and erosion in high-current diffuse vacuum arcs on axial magnetic field contacts[J]. IEEETrans. on PlasmaSciences, 2001, 29(3)." 452-461.
  • 8Slade P G, The vacuum interrupter: theory, design and application [M]. CRC Press, New Brunswick, 2008.
  • 9王立军,贾申利,史宗谦,荣命哲.真空电弧磁流体动力学模型与仿真研究[J].中国电机工程学报,2005,25(4):113-118. 被引量:44
  • 10Shi Zongqian, Jia Shenli, Wang Lijun, et al. The influence of axial magnetic filed distribution on high-current vacuum arc[C]. 23rd International Symposia on Discharge and Electrical Insulation in Vacuum, Bucharest, Romania, 2008.

二级参考文献59

共引文献94

同被引文献158

引证文献16

二级引证文献140

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部