期刊文献+

增强偏最小二乘回归算法在近红外光谱法啤酒度数软测量建模中的应用

Application of Boosting Partial Least Square Regression to Soft-sensor Modeling for NIRS Determination of Alcohol Degree of Beer
下载PDF
导出
摘要 软测量技术广泛应用于工业过程,其核心是建立一个可靠的软测量模型。常规的软测量都是基于建立单个的数学模型,常难达到需要的精确和稳健性。基于机器学习的集成思想,给出了增强偏最小二乘回归(boosting-PLS)算法,并将其用于一个基于近红外光谱法啤酒度数软测量中,试验结果表明:应用boosting-PLS算法所建模型是一种精确、稳健、有应用潜力的软测量方法,特别适合于类似涉及高维光谱数据的软测量。 Soft sensors have been widely used in industrial process,the core of which is the establishment of a reliable soft-sensor model.Conventionally the application of soft-sensor is based on the establishment of a single mathematical model,which is often difficult to achieve at the required accuracy and robustness.Base on the idea of ensemble from machine learning,the algorithm of boosting ensemble partial least square regression(boosting-PLS) was proposed and applied to soft-sensor modelling,which was used in NIRS determination of alcohol degree of beer.As shown by experimental results,the soft-sensor model established on the base of the algorithm of boosting-PLS was proved to be accurate and robust and suitable especially for soft-sensor involving high-dimensional spectral data.
作者 谭超 吴同
出处 《理化检验(化学分册)》 CAS CSCD 北大核心 2010年第8期891-894,共4页 Physical Testing and Chemical Analysis(Part B:Chemical Analysis)
基金 四川省青年科技基金(09ZQ026-066) 宜宾学院博士科研启动基金(2008B06)
关键词 增强偏最小二乘回归算法 软测量 近红外光谱 Boosting partial least square regression Soft-sensor Near infrared spectroscopy
  • 相关文献

参考文献14

  • 1FORTUNAA L, GRAZIANIA S, XIBILIA M G. Soft sensors for product quality monitoring in debutanizer distillation colunms[J]. Control Engineering Practice, 2005,13: 499-508.
  • 2谭超.基于支持向量机的软测量技术及其应用[J].传感器技术,2005,24(8):77-79. 被引量:9
  • 3谭超.基于后向区间选择偏最小二乘算法的软测量建模[J].传感器与微系统,2007,26(5):57-59. 被引量:3
  • 4YAN Wei-wu, SHAO Hui-he, WANG Xiao-fang. Soft sensing modeling based on support vector machine and Bayesian model selection [J]. Computers and Chemical Engineering, 2004,28:1489-1498.
  • 5周志华,陈世福.神经网络集成[J].计算机学报,2002,25(1):1-8. 被引量:245
  • 6DIETTERICH T G. Machine learning research: four current directions[J]. AI Magazine, 1997,18(4) : 97- 136.
  • 7TAN Chao, LI Meng-long, QIN Xin. Study of the feasibility of discriminating cigarettes of different brands by an Adaboost algorithm and near-infrared spectmscopy[J]. Analytical and Bioanalytical Chemistry, 2007,389(20) : 667-674.
  • 8SCHAPIRE R E. The strength of weak leamability [J]. Machine learning, 1990,5 (2) : 197-227.
  • 9FREUND Y, SHAPIRE R. A decision-theoretic generalization of on-line learning and application to boosting[J]. Computer and System Sciences, 1997,55(1). 119-139.
  • 10DRUCKER H. Improving regressors using boosting techniques[C].//Proceedings of the Fourteenth International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers, 1997:107- 115.

二级参考文献14

  • 1熊志化,邵惠鹤,张卫庆.基于支持向量机的火电厂烟气含氧量软测量[J].测控技术,2004,23(8):15-16. 被引量:21
  • 2周育才,刘志强,李和清.基于神经网络软测量技术的发动机排放测试[J].公路与汽运,2003(6):6-7. 被引量:2
  • 3Vapnik V N.The Nature of statistical Learning Theory [M].NewYork: Springer-Verlag,1999.
  • 4Suykens J A K,Vandewalle J.Least squares support vector machines classifiers [J].Neural Network Letters,1999,l9(3):293-300.
  • 5YAN Wei-wu, SHAO Hui-he, WANG Xiao-fan. Soft sensing modeling based on support vector machine and Bayesian model selection [ J ]. Computers and Chemical Engineering, 2004 ( 28 ) : 1489 -1498.
  • 6Fortuna L,Grazian S,Xibilia M G. Soft sensors for product qualitymonitoring in debutanizer distillation columns [ J ]. Control Engineering Practice,2005 ( 13 ) :499 -508.
  • 7Berglund A, Wold S. Implicit non-linear latent variable regression [ J ]. Chemometrics ,1997 ( 11 ) : 141 -156.
  • 8Johan T, Svante W. PLS regression on wavelet compressed NIR spectra [ J ]. Chemometrics and Intelligent Laboratory Systems, 1998 (42) :209-220.
  • 9Centner V, Massart D L, de Noord O E, et al. Elimination of uninformative variables for multivariate calibration [ J ]. Anal Chem, 1996 (68) :3851 -3858.
  • 10Lindgren F, Geladi P, Rannar S, et al. Interactive variable selection (IVS) for PLS: theory and algorithms [ J]. Chemometrics, 1994(8) :349 -363.

共引文献254

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部