摘要
The flow and heat transfer characteristics were numerically investigated on a film cooling model under different rotating operating conditions.The computational model was originated from the mid-span section of a typical turbine rotor with two rows of 14 staggered injection holes angled 30° both on the suction surface and pressure surface,and the flow through the coolant plenum and all the hole-pipes were resolved as a part of the computational domain by specifying the coolant mass flux in the plenum.The computations primarily focus on under-standing the rotational effect on film cooling performance in mechanism research approach.In the present study,the Reynolds number(Re) based on mainstream velocity and injection hole diameter varied from 1835.5 to 5507.4,and the averaged blowing ratio(M) ranges of 0.5 to 1.5.Results show that the coolant will move on to the high-radius locations near the suction and pressure surfaces due to the strong centrifugal effect,which leads to the decrease in adiabatic effectiveness accordingly.The discharge coefficients(Cd),on the pressure surface,are much higher than that on the suction surface under a given operating condition.In addition,the critical values of angular speed which represent the equilibrium of centrifugal force and Coriolis force near the pressure surface are also presented.
The flow and heat transfer characteristics were numerically investigated on a film cooling model under different rotating operating conditions.The computational model was originated from the mid-span section of a typical turbine rotor with two rows of 14 staggered injection holes angled 30° both on the suction surface and pressure surface,and the flow through the coolant plenum and all the hole-pipes were resolved as a part of the computational domain by specifying the coolant mass flux in the plenum.The computations primarily focus on under-standing the rotational effect on film cooling performance in mechanism research approach.In the present study,the Reynolds number(Re) based on mainstream velocity and injection hole diameter varied from 1835.5 to 5507.4,and the averaged blowing ratio(M) ranges of 0.5 to 1.5.Results show that the coolant will move on to the high-radius locations near the suction and pressure surfaces due to the strong centrifugal effect,which leads to the decrease in adiabatic effectiveness accordingly.The discharge coefficients(Cd),on the pressure surface,are much higher than that on the suction surface under a given operating condition.In addition,the critical values of angular speed which represent the equilibrium of centrifugal force and Coriolis force near the pressure surface are also presented.
出处
《航空动力学报》
EI
CAS
CSCD
北大核心
2010年第7期1443-1453,共11页
Journal of Aerospace Power
基金
supported by the program of New Century Excellent Talents in Beijing University of Aeronautics and Astronautics(Grant No.NCET-05-0189)
funded by the Fanzhou Youth Science Foundation(Grant No.20070401)