期刊文献+

动叶栅倒角对透平级气动性能的影响 被引量:11

Influence of rotor blade fillets on turbine stage performance
原文传递
导出
摘要 对Aachen透平第一级动叶栅添加倒角结构,应用全三维黏性数值模拟方法,分析了级环境下动叶栅倒角对透平级性能和内部流场的影响.结果表明:过小的倒圆夹角会明显降低透平级效率,在叶栅加工中应给予足够重视;倒角结构降低了动叶根、顶处横向压差,气动负荷向动叶栅后半部分转移;动叶根部和顶部倒角对流场的影响主要分布于0%~55%和70%~100%叶高范围内,受倒角影响上、下通道涡向叶栅中部靠近,端壁处角涡强度增大,次流损失上升. The rotor blade in the first stage of Aachen turbine was added with a fillet structure,and a full three-dimensional viscous numerical simulation was performed to analyze the influence of rotor fillet on the performance of turbine stage and flow fields under the stage environment.The results indicate that the efficiency decreases significantly when the angle between fillet and end wall becomes too small,which should raise more attention in the manufacturing process of rotor blade.The fillet structure decreases the transverse pressure difference near the rotor hub and shroud,and shifts the aerodynamic load to the latter half part of the rotor blade.The fillets at hub and shroud affect the flow field of the rotor mainly at the 0%~55% span and the 70%~100% span,respectively.The upper and lower passage vortexes are close to the midspan of rotor due to the influence of the fillet,leading to increase of the intensity of corner vortex and the loss of second flow near the endwall.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2010年第8期1842-1848,共7页 Journal of Aerospace Power
关键词 动叶栅 倒角 透平级 二次流 数值模拟 rotor blade fillet turbin stage secondary flow numerical simulation
  • 相关文献

参考文献12

  • 1Shih T I P, Lin Y L. Controlling secondary-flow structure by leading-edge airfoil fillet and inlet swirl to reduce aerodynamic loss and surface heat transfer[J]. ASME Journal of Turbomachinery,2003,125(1) :48-56.
  • 2Zess G A, Thole K A. Computational design and experimental evaluation of using a leading edge fillet on a gas turbine vane[J]. ASME Journal of Turbomaehinery, 2002, 124(2) : 167-175.
  • 3Lethander A,Thole K,Zess G,et al. Optimizing the vaneendwall junction to reduce adiabatic wall temperatures in a turbine vane passage[J], ASME Paper GT2003-38939, 2003.
  • 4Sauer H, Muller R, Vogeler K. Reduction of secondary flow losses in turbine cascades by leading edge modifications at the endwall[J]. ASME Journal of Turbomachinery, 2001, 123(2) :207- 213.
  • 5Mahmood G I, Gustafson R, Acharya S. Experimental in vestigation of flow structure and Nusselt number in a low speed linear blade passage with and without leading edge fillets[J]. ASME Journal of Heat Transfer, 2005,127 (5) : 499-512.
  • 6Mahmood G I, Acharya S. Experimental investigation of secondary flow structure in a blade passage with and with out leading edge fillets[J]. ASME Journal of Fluids Engineering, 2007,129 (3) :253-262.
  • 7Mahmood G I, Acharya S. Measured endwall flow and passage heat transfer in a linear blade passage with endwall and leading edge modifieations[R]. ASME Paper GT2007- 28179,2007.
  • 8Saha A K, Mahmood G I, Acharya S. The role of leading edge contouring on end-wall flow and heat transfer: corn putations and experiments [ R]. ASME Paper GT2006- 91318,2006.
  • 9康顺,孙丽萍.叶根倒角对离心叶轮气动性能的影响[J].工程热物理学报,2009,30(1):41-43. 被引量:20
  • 10毛明明,宋彦萍,王仲奇.倒角和间隙对跨音轴流压气机气动性能的影响[J].热能动力工程,2005,20(5):469-473. 被引量:11

二级参考文献14

  • 1康顺,刘强,祁明旭.一个高压比离心叶轮的CFD结果确认[J].工程热物理学报,2005,26(3):400-404. 被引量:37
  • 2Hirsch Ch, Kang S, Pointel G. A Numerically Supported Investigation of the 3D Flow in Centrifugal Impellers, Part Ⅰ: The Validation Base. ASME 96-GT-151, 1996
  • 3Hirsch Ch, Kang S, Pointel G. A Numerically Supported Investigation of the 3D Flow in Centrifugal Impellers, Part Ⅱ: Secondary Flow Structure. ASME 96-GT-152, 1996
  • 4Kang S, Hirsch Ch. Numerical Simulation and Theoretical Analysis of the 3D Viscous Flow in Centrifugal Impellers. Journal TASK Quarterly, Poland, 2001, 5(4): 455-479
  • 5Kang S. Numerical Investigation of a High Speed Centrifugal Compressor. ASME GT2005-68092, 2005
  • 6Eisenlohr G, Krain H. Investigation of the Flow through a High Pressure Ratio Centrifugal Impeller. ASME 2003- GT-303, 2002
  • 7SAUER K,MULLER R,VOGELER K.Reduction of secondary flow losses in turbine cascades by leading edge modifications at the endwall[J].ASME Journal of Turbomachinery,2001,123:207-213.
  • 8ZESS G A,THOLE K A.Computational design and experimental evaluation of using a leading edge fillet on a gas turbine vane[J].ASME Journal of Turbomachinery,2002,124:167-175.
  • 9CHEN G T,GGEITZER E M,TAN C S,et al.Similarity analysis of compressor tip clearance flow[J].ASME Journal of Turbomachinery,1991,113(2):260-271.
  • 10HOFFMA N W H,BALLMAN J.Some aspects of tip vortex behavior in a transonic turbocompressor[A].ISABE Paper[C].Bangalore: International Society for Air Breating Engine, 2003.1-11.

共引文献22

同被引文献92

引证文献11

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部