期刊文献+

自适应中心变异差分进化算法及其在涡轮叶型优化设计中的应用 被引量:4

Self-adaptive center-mutation differential evolution and its application to shape optimization design of a turbine blade
原文传递
导出
摘要 为了更好地求解多维复杂函数优化问题,提出了自适应中心变异差分进化算法(SCDE),并以低温火箭发动机多级氧涡轮叶片的高精度气动型面优化设计为例进行了验证.使用商业软件进行三维叶片几何造型和单通道流场分析,计算得到涡轮效率作为优化设计评价指标.最终得到了合理的优化结果,涡轮效率相比初始设计提高了5.25%. A self-adaptive center-mutation differential evolution(SCDE) was developed for the high-dimension complex optimization problems,and applied to the high fidelity aerodynamic optimization design of the multi-stage oxidizer turbine blade shapes for cryogenic rocket engines.Performances of design candidates were evaluated by the turbine efficiency based on three-dimensional airfoil geometry design and single-channel flow analysis using commercially available CAD(computer aided design) and CFD(computational fluid dynamics) packages.The reasonable solution is finally achieved,namely,turbine efficiency of the optimal design is 5.25% higher than that of the original one.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2010年第8期1849-1854,共6页 Journal of Aerospace Power
关键词 差分进化 自适应 中心变异 涡轮叶片 气动优化 differential evolution self-adaptive center-mutation turbine blade aerodynamic optimization
  • 相关文献

参考文献13

  • 1Storn R,Price K. Differential evolution--a simple and efficient adaptive scheme for global optimization over continu ous spaces[R]. Berkeley: International Computer Science Institute,TR 95-012,1995.
  • 2Storn R, Price K. Minimizing the real functions of the ICEC'96 contest by differential evolution[C] // Proceeding of IEEE Conference on Evolutionary Computation. Nagoya:IEEE,1996:842 844.
  • 3Price K. Differential evolution vs. the functions of the 2nd ICEO[C] // Proceeding of IEEE International Conferenceon Evolutionary Computation. Indianapolis: IEEE, 1997:153-157.
  • 4Babu B V, Angira R. Modified differential evolution (MDE) for optimization of non linear chemical processes[J]. Computers and Chemical Engineering, 2006, 30: 989-1002.
  • 5Chen Y, Yang S, Nie Z. Synthesis of uniform amplitude thinned linear phased arrays using the differential evolution algorithm[ J]. Electromagneties, 2007,27 (5) : 287-297.
  • 6宋立明,罗常,李军,丰镇平.基于全局气动优化方法的跨声速叶栅气动优化[J].航空动力学报,2008,23(6):1019-1023. 被引量:6
  • 7Fan H Y, Lampinen J. A trigonometric mutation approach to differential evolution[J]. Journal of Global Optimization, 2003,27 : 105-129.
  • 8Brest J, Greiner S, Boskovic B, et al. Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems[J]. IEEE Trans. on Evolutionary Computation, 2006,10(6) : 646-657.
  • 9Rahnamayan S, Tizhoosh H R, Salama M M A. Opposition-based differential evolution[J], IEEE Trans. on Evolutionary Computation, 2008,12 (1) : 64-79.
  • 10Becerra R L, Coello C A C. Cultured differential evolution for constrained optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2006,195:4303-4322.

二级参考文献9

  • 1Michalewica Z. Genetic algorithms+data structures= evolution programs [M]. Berline: Springer Verlag, 1996.
  • 2SONG Liming, FENG Zhenping,LI Jun. Shape optimization of turbine stage using adaptive range differential evolution and three-dimensional Navier-Stokes solver [R]. Nevada:ASME Turbo Expo 2005, ASME Paper 2005- GT-68280,2005 : 1033-1040.
  • 3Benini E. Three-dimensional multi-objective design optimization of a transonic compressor rotor[J].Journal of Propulsion and Power,2004, 20 (3) : 559-565.
  • 4Toyotaka S. A study of advanced high-loaded transonic turbine airfoils [J]. ASME Journal of Turbomachinery, 2006,(128):650-657.
  • 5Storn R. Minimizing the real functions of the ICEC' 96 contest by differential evolution[R]. Nagoya: IEEE Conference on Evolutionary Computation, 1996: 842-844.
  • 6Hrstka O. A competitive comparison of different types of evolutionary algorithms [J]. Computers & Structures, 2003, 81: 1979-1990.
  • 7Korakianitis T. Surface-curvature distribution effects on turbine-cascade performance [J]. ASME Journal of Turbomachinery, 1993,(115):334-340.
  • 8Reid L, Moore R D. Design and overall performance of four highly loaded, high-speed inlet stages for an advanced high-pressure ratio core compressor[R]. NASA TP 1337, 1978.
  • 9Moore R D, Reid L. Performance of single axial flow transonic compressor with rotor and stator aspect ratio of 1.19 and 1.26, respectively, and with design pressure ratio of 2.05[R]. NASATP1659, 1980.

共引文献5

同被引文献33

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部