期刊文献+

基于误差反馈控制的建立航空发动机自适应模型方法 被引量:2

Adaptive model of aero-engines based on error-feedback control
原文传递
导出
摘要 提出了基于误差反馈控制的建立航空发动机自适应模型方法.即以实际发动机的输出为参考指令,以航空发动机性能蜕化值为航空发动机模型的控制量,通过设计鲁棒性好且能消除稳态误差的增广线性二次型最优调节(ALQR)控制器以实现模型的输出自适应地无偏跟踪真实发动机的输出,利用ALQR的鲁棒性,使模型具有良好的自适应性.ALQR和发动机模型一起构成航空发动机自适应模型.最后通过稳态仿真和动态仿真表明该方法不仅可以实现自适应模型全包线跟踪稳态真实发动机,同时能实现动态跟踪真实发动机. A method was presented based on error-feedback control to establish an adaptive model.This method took the real aero-engine's measurable outputs as the reference command,and the deterioration level as the control variables.Then an augmented linear quadratic regulator(ALQR) controller was designed to make the model's outputs adaptively and precisely track the real engine's outputs.Because of the robustness of the controller,the model has good adaptive performance.The controller and the engine model form the adaptive model.The simulation indicates that this method achieves very good performance.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2010年第8期1913-1917,共5页 Journal of Aerospace Power
基金 国家自然科学基金(50576033)
关键词 航空发动机 自适应模型 增广线性二次型最优调节控制器(ALQR) 性能蜕化 误差反馈控制 aero-engine adaptive model augmented linear quadratic regulator(ALQR) performance deterioration error-feedback control
  • 相关文献

参考文献13

  • 1Luppold R H, Roman J R, Gallops G W, et al. Estimating in flight performance variation using Kalman filter concepts[R]. AIAA 89-2584,1989.
  • 2Simon D. Aircraft turbofan engine health estimation using constrained Kalman filtering [R]. NASA/TM 2003- 212528,2003.
  • 3Kobayashi T. Application of a constant gain extended Kalman filter for in-flight estimation of aircraft engine performance parameters[R]. NASA/TM 2005-213865,2005.
  • 4Kobayashi T. Hybrid Kalman filter: a new approach for aircraft engine in-flight diagnostics[R]. NASA/TM 2006- 214491,2006.
  • 5Gilyard G,Orme J. Subsonic flight test evaluation of a performance seeking control algorithm on an F 15 airplane [R]. AIAA 92- 3743,1992.
  • 6Lietzau K,Kreiner A. Model based control concepts for jet engines[C] // Proceedings of ASME Turbo. Expo. 2001. New Orleans, Louisian, USA : ASME, 2001.
  • 7Burcham F W, Jr. , Gilyard G B, Myers L P. Propulsion system/flight control integration and optimization [R]. NASA Technical Memorandum 4207,1990.
  • 8Nemeth E, Anderson R, Maram J, et al. An advanced intelligent control system framework[R]. AIAA-92-3162,1992.
  • 9Garg S. Controls and health management technologies for intelligent aerospace propulsion systems[R]. NASA/TM 2004- 212915,2004.
  • 10袁春飞,姚华,杨刚.航空发动机机载实时自适应模型研究[J].航空学报,2006,27(4):561-564. 被引量:25

二级参考文献25

  • 1张明君,张化光.基于遗传算法优化的神经网络PID控制器[J].吉林大学学报(工学版),2005,35(1):91-96. 被引量:33
  • 2刘建勋,李应红,陈永刚,尉询楷.航空发动机递归神经网络分路式解耦控制[J].航空动力学报,2005,20(2):287-292. 被引量:9
  • 3章霖官 刘爱萍 林青峰.在MATRIXx平台上进行的涡扇发动机控制系统数字仿真[R]..青岛:第十届发动机自动控制专业学术交流会[C].,2000..
  • 4Frank L L. Applied Optimal Control and Estimation[M]. Englewood Cliffs,N J Prentice Hall, 1992-.
  • 5Daniel E M, Mauro R. Simultaneous Stabilization With Near Optimal LQR Performance[J]. IEEE Trans Automat Contr ,2001,46(10) :1543- 1555.
  • 6De Hoff R L,Hall W E,Jr- Design of A Multivariable Controller for An Advanced Turbofan Engine[R]. Proceedings of the Fifteenth Conference on Decision and Control and Symposium on Adaptive Processes, Institute of Electrical and Electronics Engineers,Inc , 1976 : 1002- 1008.
  • 7Chen B M, Saberi A, Sannuti P A. New Stable Compensator Design for Exact and Approximate Loop Transfer Recovery[J]. Automatica, 1991,27 (2) : 257- 280.
  • 8徐刚,博士学位论文,1995年
  • 9李松林,孙健国,李健民,唐世建.求解涡扇发动机数学模型的有限域搜索方法[J].航空动力学报,1997,12(3):276-278. 被引量:19
  • 10Krishnaswamy P R,Shukla N V,Deshpande P B,et al.Reference system decoupling for multivariable control[J].Industrial and Engineering Chemistry Research,1991,30 (4):662-670.

共引文献106

同被引文献20

  • 1鲁峰,黄金泉.基于遗传算法的航空发动机机载模型支持向量机修正方法[J].航空动力学报,2009,24(4):880-885. 被引量:11
  • 2S Weiss,et al. Versatile distributed pose estimation and sensor self -calibration for an autonomous MAV[ C]. Robotics and Automa- tion(ICRA), 2012 IEEE International Conference on. IEEE, 2012:31 -38.
  • 3I D Cowling, et al. A prototype of an autonomous controller for a quadrotor UAV[ C ]. European Control Conference. 2007 : 1 - 8.
  • 4D Mellinger, et al. Cooperative grasping and transport using multi- pie quadrotors [ M ]. Distributed autonomous robotic systems. Springer Berlin Heidelberg,2013:545 - 558.
  • 5S Bellens,J De Sehutter, H Bruyninekx. A hybrid pose/wrench control framework for quadrotor helicopters [ C ]. Robotics and Automation ( ICRA ), 2012 IEEE International Conference on. IEEE, 2012:2269 - 2274.
  • 6R Ritz, et al. Cooperative quadroeopter ball throwing and catching [C]. Intelligent Robots and Systems (IROS) ,2012 IEEE/RSJ In- ternational Conference on. IEEE,2012:4972 -4978.
  • 7M Bangura,R Mahony. Nonlinear dynamic modeling for high per- formance control of a quadrotor [ C ]. Australasian Conference on Robotics and Automation. 2012 : 1 - 10.
  • 8G M Hoffmann, et al. Precision flight control for a multi - vehicle quadrotor helicopter testbed [ J ]. Control engineering practice, 2011,19(9) :1023 - 1036.
  • 9D H Shin, Y Kim. Reconfigurable flight control system design u- sing adaptive neural networks [ J ]. Control Systems Technology, IEEE Transactions on ,2004,12 (1) :87 -100.
  • 10黄伟斌,黄金泉.航空发动机故障诊断的机载自适应模型[J].航空动力学报,2008,23(3):580-584. 被引量:25

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部