期刊文献+

基于Karatsuba递归思想的Montgomery模乘算法

A novel Montgomery modular multiplication algorithm based on Karatsuba recursive idea
下载PDF
导出
摘要 采用大数的高基表示方法和Karatsuba递归思想改进了Montgomery模乘中的IFIOS实现算法,该算法可以应用于RSA公钥体制下的模乘法器的设计。模乘运算的速度决定了公钥加密系统和众多通信系统的系统性能,通过与IFIOS算法的比较分析发现,改进后的算法具有使用的乘法次数少、并行性能高等优点,是一种适合设计硬件的高效算法。此算法也适用于其他公钥体制的加解密处理器。 A high-radix technique and aratsuba recursive idea is employed to improve the IFIOS-Montgomery's algorithm, and the improved algorithm is adapted to design of modular multiplier for RSA cryptosystem. Modular multiplication operation is a key factor of determining performance system of publickey cryptography systems and most of communication systems. Compared with IFIOS algorithm, the improved algorithm require less multiplications and has a higher parallel performance. So the improved algorithm is an efficient algorithm suitable for hardware design and adapted to several public-key system encryption/decryption processors.
出处 《微型机与应用》 2010年第16期21-23,共3页 Microcomputer & Its Applications
基金 河北省自然科学基金数学研究专项(08M009) 河北省科学院重大科技攻关项目(D2009614)
关键词 MONTGOMERY模乘 Karatsuba递归思想 IFIOS Montgomery modular multiplication Karatsuba recursive idea IFIOS
  • 相关文献

参考文献6

  • 1IPUT H K, ASEP B N, RANDY S P, et al. Very fast pipelined RSA architecture based on montgomery's algorithm[C]. 2009 International Conference on Elec- trical Engineering and Informatics. Bangi, Malaysia IEEE Computer Socitey Press, 2009:491-495.
  • 2FANG X Y, ZHANG J H. The researcher and implement of high-speed modular muhiplication algorithm basing on parallel Pipelining[C]. 2009 AsiaPacific Conference on Information Processing. Shenzhen, China, IEEE Computer Socitey Press, 2009: 398-403.
  • 3KOC C C, ACAR T, KALISKI B S. Analyzing and comparing montgomery multiplication algorithms[J]. IEEE Micro. 1996,16(3):26-33.
  • 4WU C L. An efficient common-multiplicand-multiplication method to the montgomery algorithm for speeding up exponentiation[J]. Information Sciences. 2009,179(4): 410-421.
  • 5王红霞,王金荣,赵宪生.Montgomery模乘算法的改进及其应用[J].计算机工程与应用,2007,43(20):52-55. 被引量:4
  • 6蔡风景,李涛.一种快速乘法算法——Karatsuba乘法算法[J].湘潭师范学院学报(自然科学版),2004,26(1):55-56. 被引量:2

二级参考文献11

  • 1Rivest R L,Shamir A,Adleman L.A method of obtaining digital signature and public key cryptosystems[J].Comm of ACM,1978,21(2):120-126.
  • 2ElGamal T.A public-key cryptosystem and a signature scheme based on discrete logarithms[J].IEEE Trans on Information Theory,1985,IT-31 (4):469-472.
  • 3National Institute of Standards and Technology.NIST FIPS PUB 185 Digital Signature Standard[S].U S Department of Commerce,1994-05
  • 4Montgomery P L.Modular multiplication without trial division[J].Mathematics of Computation,1985 44:519-521.
  • 5Dusse S R,Kaliski B S Jr.A cryptographic library for the motorola DSP56000[C]//Damgaard I B.LNCS 473:Advances in CryptologyEUROCRYPT'90.New York:Springer-Verlag,1990:230-244.
  • 6Koc C K,Acar T,Kaliski B.Analyzing and comparing montgomery multiplication algorithms[J].IEEE Micro,1996,16:26-33.
  • 7Walter C D.Systolic modular multiplication[J].IEEE Transactions on Computer,1992:376-378.
  • 8薛长虹.计算机代数实验课程初探[J].成都气象学院学报,1998,13(4):360-365. 被引量:7
  • 9李世奇.计算机代数与群论[J].重庆教育学院学报,2000,13(3):53-57. 被引量:2
  • 10李世奇.计算机代数与数论[J].重庆教育学院学报,2002,15(3):11-15. 被引量:1

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部