摘要
探讨了采用径向基神经网络对开关磁阻电动机定子径向力进行建模的方法。考虑到定子径向力模型中的两个输入量,即绕组电流和转子位置,取值范围较大,本文提出了先对输入量进行归一化处理,使得基函数的中心映射在[0,1]的闭区间内,再使用最近邻聚类和最速梯度下降法对网络进行训练的方法。文中给出了径向基神经网络和误差反传神经网络在建模精度和收敛速度上的比较,结果证实径向基函数神经网络除了具有很强的非线性逼近精度和泛化能力外,在给定同样的隐层神经元结构、网络学习率和目标误差,径向基神经网络在定子径向力非线性模型的训练过程中收敛速度更快,网络学习效率更高。
出处
《电气应用》
北大核心
2010年第16期24-27,共4页
Electrotechnical Application
基金
南京工程学院人才引进科研启动基金资助项目(YKJ200905)