期刊文献+

Heisenberg群上与Schrdinger算子相关的Riesz变换(英文)

Riesz Transform Associated With Schrdinger Operators on the Heisenberg Group
原文传递
导出
摘要 本文考虑了Heisenberg群H^n上的Schrdinger算子-△_(H^n)+V,其中△_(H^n)是次拉普拉斯算子以及对于q≥Q/2和Q是H^n的齐次维数,非负位势V属于逆Hlder类B_q.主要结果是证明如果q=Q,Riesz变换▽_(H^n)(-△_(H^n)+V)^(-1/2)是Calderon-Zygmund算子,其中▽_(H^n)是H^n上的梯度算子. In this paper we consider the Schrodinger operators -△_H^n + V on the Heisenberg group H^n where△_H^n is the sublaplacian and the nonnegative potential V belongs to the reverse Holder class B^q for q≥Q/2 where Q is the homogeneous dimension of H^n.Our main result is to prove that the Riesz transform▽_H^n(-△_H^n + V)^(-1/2) is Calderon-Zygmund operator if q = Q,where▽_H^n is the gradient operator on H^n.
作者 刘宇
出处 《数学进展》 CSCD 北大核心 2010年第4期453-459,共7页 Advances in Mathematics(China)
基金 Supported by the Tian Yuan Project of NSFC(No.10726064 and No.10901018)
关键词 HEISENBERG群 Schrdinger算子 逆Hlder类 Heisenberg group Schrdinger operators reverse Hlder class
  • 相关文献

参考文献7

  • 1Fefferman, C., The uncertainty principle, Bull. Amer. Math. Soc., 1983, 9(2): 129-206.
  • 2Zhong J., Harmonic analysis for some Schr6dinger type operators, Ph.D., Princeton University, 1993.
  • 3Shen Z., Lp estimates for Schrodinger operators with certain potentials, Ann. Inst. Fourier, Grenoble, 1995, 45(2): 513-546.
  • 4Li H., Estimations Lp des operateurs de Schrodinger sur les groupes nilpotents, J. Func. Anal. 1999, 161(1): 152-218.
  • 5Coulhon, T., Muller, D. and Zienkiewicz, J., About Riesz transform on the Heisenberg groups, Math. Ann., 1996, 305(1): 369-379.
  • 6Lu G, A note on a Poincare type inequality for solutions to subelliptic equations, Commu. PDE., 1996, 21(1-2): 235-254.
  • 7Christ, M., Lp bounds for spectral multipliers on nilpotent groups, Trans. Amer. Math. Soc., 1991, 328(1): 73-81.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部