期刊文献+

采用神经网络预估法建立板材力学性能预测模型 被引量:1

Prediction-Evaluation Model of Mechanical Properties of Steel Strip Based on Artificial Neural Network
下载PDF
导出
摘要 为提高产品质量,降低产品成本,开发了板材的屈服强度、抗拉强度、延伸率等力学性能的预测模型;介绍了建立热轧带钢力学性能质量模型的数据挖掘过程;用普通神经网络建立起由工艺参数预测力学性能的质量模型,模型预测结果的5%命中率是0.508;然后,提出一种新的建模方法——预估法,该方法是以三层BP神经网作为基本模型,通过增加模型层数,缩小底层子模型的预测范围,从而提高模型的泛化能力,这种方法的关键问题是能够对测试数据实现正确分类;利用该方法建立起质量模型,预测结果的5%命中率达到0.706,完全可以满足现实生产需要。 In order to improve the product quality and reduce the product cost, the mechanical properties quality models of yield strength, tensile strength, and elongation are established. The data mining process of establishing the quality model, that could predict the mechanical properties of hot--rolled steel strip with the technological parameter, is introduced. Then, the quality model whose hit ratio of 5% deviation reach 0. 508 was established by applying the technology of basic artificial neural network. The technology of prediction--evalua tion is proposed. This method increases the generalization ability of the model through increasing model layers and decreasing the prediction of submodel of base layer basing on the basic model of artificial neural network. The key of the method lies in that whether the tested data can properly enter the submodel or whether the tested data can be properly classified. Finally, the quality model whose hit ratio of 5% deviation reach 0. 706 was established by applying the technology of prediction--evaluation, and this model could meet current industrial demand fully.
作者 王丹民
出处 《计算机测量与控制》 CSCD 北大核心 2010年第8期1756-1758,共3页 Computer Measurement &Control
关键词 神经网络 热轧带钢 预估法 artificial neural network hot--rolled steel strip prediction--evaluation
  • 相关文献

参考文献3

二级参考文献10

  • 1Rohde W, Flemming G.TSCR Technology-current State, Capabilities and Further Development.SMS Technical Report CC and Rolling, 1995,18 (4) : 82-98.
  • 2Hottel H C, Sarofim A. Radiative Heat Transfer. McGraw-Hill. New York. 1967.
  • 3Kim J G, Huh K Y. Prediction of Transient Slab Temperature Distribution in the Reheating Furnace of a Walking-beam Type for Rolling of Steel Slabs. ISIJ International, 2000, 40(11):1115-1123.
  • 4Ren X Z . Experimental Study and Modeling of IF Steel Oxidation Process in Air. Master Thesis. MMAT/UBC. Vancouver. Canada. 2000.
  • 5Muojekwu C A, Jin D Q, Samarasekera I V. Thermo Mechanical History of Steel Strip During Hot Rolling--a Comparison of Conventional Cold-charged Rolling and Hot-direct Rolling of Thin Slabs.37th MWSP.Hamilton. Ontario. Canada. 1995.
  • 6Muojekwu C A. Modeling of Thermo Mechanical and Metallurgical Phenomena in Steel Strip During Hot Direct Rolling and Runout Table Cooling of Thin-cast Slabs. Ph. D. Thesis. MMAT/UBC. Vancouver.Canada. 1998.
  • 7Muojekwu C A, Jin D Q, Hernandez V H. Hot Direct Rolling, Runout Table Cooling and Mechanical Properties of Steel Strips Produced From Thin Slabs. 38th MWSP. 1996.
  • 8Choquet P, Fabregue P, Giusti J. Modeling of Forces, Structure and Final Properties During the Hot Rolling Process on the Hot Strip Mill. Intl. Syrup. on Mathematical Modeling of Hot Rolling of Steel. 1990. 34-44.
  • 9LIU Z D. Experiments and Mathematical Modeling of Controlled Runout Table Cooling in a Hot Rolling Mill.Ph.D. Thesis. MMAT/UBC. Vancouver. Canada. 2000.
  • 10田乃嫒.薄板坯连铸连轧[M].北京:冶金工业出版社,1998..

共引文献14

同被引文献9

  • 1Li Q,Cao G,Li J.Process Estimated Temperature Model of Mol-ten Steel in LF Based on BP Neural Network Combined with Expert System[J].Applied Mechanics and Materials,2011,48-49:853-857.
  • 2SUYKENS J A K,VANDEWALLE J.Least Squares Support Vec-tor Machine Classifiers[J].Neural Processing Letters,1999,19(3):293-300.
  • 3Zhen C,An Y H.Modeling and simulation of the GA-LSSVM-based soft measurement for torque[J].Applied Mechanics and Ma-terials,2010,44-47:733-737.
  • 4Schlkopf B,Smola A,Müller K R.Nonlinear component analysis as a kernel eigenvalue problem[J].Neural Computation.1998,10(5):1299-1319.
  • 5Shi Y,Eberhart R C.Empirical study of particle swarm optimiza-tion[A].Proceedings of the1999IEEE Congress on Evolutionary Computation(CEC1999)[C].Piscataway:IEEE Press,1999:1945-1950.
  • 6Jari Nsi.Statistical analysis of cobalt removal from zinc electrolyte using the arsenic+activated process[J].Hydrometallurgy,2004,73:123-132.
  • 7Jacob Cohen,Patricia Cohen.Applied Multiple Regression/Corre-lation Analysis for the Behavioral Sciences(Third Edition)[M].Lawrence Erlbaum Associates,New Jersey,American,2003.
  • 8唐春霞,阳春华,桂卫华,朱红求.基于KPCA-LSSVM的硅锰合金熔炼过程炉渣碱度预测研究[J].仪器仪表学报,2010,31(3):689-693. 被引量:18
  • 9杨智,陈志堂,范正平,李晓东.基于改进粒子群优化算法的PID控制器整定[J].控制理论与应用,2010,27(10):1345-1352. 被引量:59

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部